

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0117 of 20 February 2023

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Wedge Anchor BZ3 dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

MKT Metall-Kunststoff-Technik GmbH & Co.KG

20 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601 Edition 09/2019

ETA-20/0117 issued on 19 June 2020

European Technical Assessment ETA-20/0117

Page 2 of 20 | 20 February 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z1626.23 8.06.01-270/22

European Technical Assessment ETA-20/0117

Page 3 of 20 | 20 February 2023

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Wedge Anchor BZ3 dynamic is a fastener made of zinc plated steel (vz) or stainless steel (A4) or high corrosion resistant steel (HCR) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic (static and quasi-static loading and seismic loading)	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B3, C2, C3
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C4
Displacements	see Annex C8, C9
Characteristic resistance and displacements for seismic performance categories C1 and C2	see Annex C5

Z1626.23 8.06.01-270/22

European Technical Assessment ETA-20/0117

Page 4 of 20 | 20 February 2023

English translation prepared by DIBt

Essential characteristic (fatigue loading, Assessment method B: Fatigue limit resistance)	Performance				
Characteristic fatigue resistance under cyclic tension loading					
Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,\infty}$					
Characteristic concrete cone, splitting and pull-out fatigue resistance $\Delta N_{Rk,c,0,\infty}$ $\Delta N_{Rk,sp,0,\infty}$ $\Delta N_{Rk,p,0,\infty}$	see Annex C1				
Characteristic fatigue resistance under cyclic shear loading					
Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,\infty}$					
Characteristic concrete edge and pry-out fatigue resistance $\Delta V_{Rk,c,0,\infty}$ $\Delta V_{Rk,cp,0,\infty}$	see Annex C1				
Characteristic fatigue resistance under combined cyclic tension and shear loading					
Characteristic steel fatigue resistance a_s ($n = \infty$)	see Annex C1				
Load transfer factor for cyclic tension, shear and combined tension and shear loading					
Load transfer factor ψ_{FN}, ψ_{FV}	see Annex C1				

3.2 Safty in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	see Annex C6, C7

3.3 Aspects of durabilty

Essential characteristic	Performance				
Durability	see Annex B1				

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

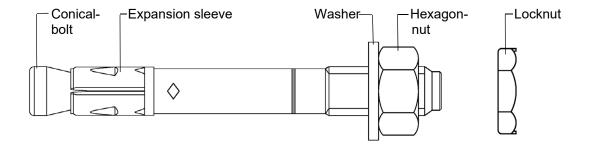
In accordance with the European Assessment Document EAD 330250-00-0601 the applicable European legal act is: 1996/582/EC.

The system to be applied is: 1

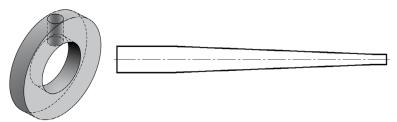
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 February 2023 by Deutsches Institut für Bautechnik

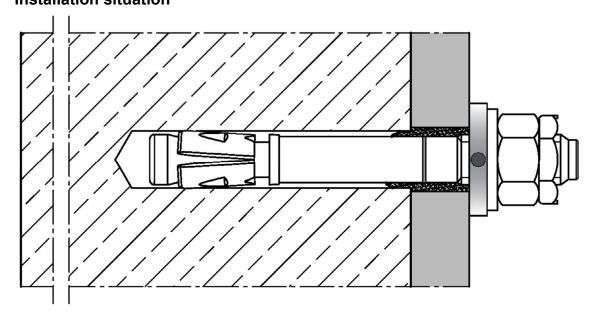

LBD Dipl.-Ing. Andreas Kummerow beglaubigt:
Head of Department Stiller

Z1626.23 8.06.01-270/22

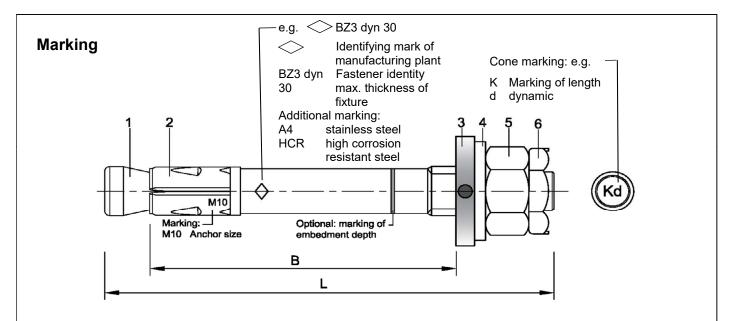


Wedge anchor BZ3 dynamic


BZ3 dynamic M10, M12, M16


Filling washer VS with reducing adapter

Filling washer (alternativ)



Installation situation

Wedge Anchor BZ3 dynamic	
Product description Product, installation situation	Annex A1

Usable length: $B = h_{ef} + t_{fix}$

hef: (existing) effective anchorage depth

t_{fix}: fixture thickness

Table A1: Length identification

Length identifier	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	T	U
Usable length B ≥	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135

Length identifier	٧	W	X	Υ	Z
Usable length B ≥	140	145	150	160	170

Dimensions in mm

Table A2: Material

Part	Designation	Steel, zinc plated (vz)	Stainless steel (A4) CRC III	High corrosion resistant steel (HCR) CRC V				
1	Conical bolt	Steel, galvanized ≥ 5 µm, fracture elongation A ₅ ≥ 8%	Stainless steel, fracture elongation A₅ ≥ 8%	High corrosion resistant steel, fracture elongation A₅ ≥ 8%				
2	Expansion sleeve	Stainless steel	Stainless steel	Stainless steel				
3	Filling washer							
4	Washer	Stool golvanized > Fum	Stainless steel	High corrosion				
5	Hexagon nut	Steel, galvanized ≥ 5 µm	Stairliess steel	resistant steel				
6	Locknut							
7	Filling mortar	e.g. MKT VMH, VMZ or VMU plus						

Wedge Anchor BZ3 dynamic	
Product description Marking, length identification, material	Annex A2

Specifications of intended use

Anchorages subject to:

- Fatigue cyclic loading
- Static and guasi-static action, fire exposure and seismic performance according to ETA-19/0619

Base materials:

- · Cracked or uncracked concrete
- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions
- For all other conditions according to EN 1993-1-2006+A1:2015-10, corresponding to corrosion resistance classes CRC according to Annex A2, Table A2

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design method EN 1992-4:2018, TR 055:2018 and TR 061:2020 (design method II)

Installation:

- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener

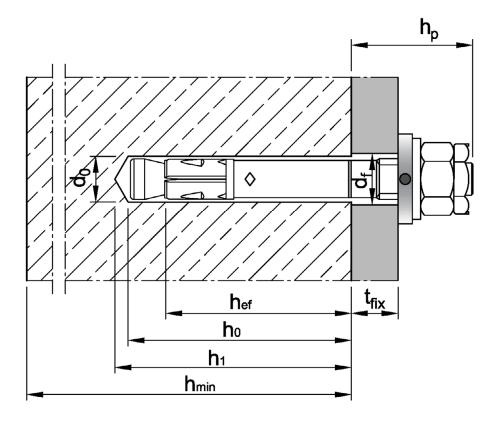

Wedge Anchor BZ3 dynamic	
Intended use Specifications of intended use	Annex B1

Table B1: Installation parameters

Anchor size				M10	M12	M16
Nominal drill hole diameter		d ₀ =	[mm]	10	12	16
Cutting diameter of drill bit		d _{cut} ≤	[mm]	10,45	12,5	16,5
Effective anchorage depth ¹)	h _{ef} ≥	[mm]	60	70	85
Donth of drill holo		h₀≥	[mm]	h _{ef} + 9	h _{ef} + 10	h _{ef} + 14
Depth of drill hole		h₁≥	[mm]	h _{ef} + 11	h _{ef} + 13	h _{ef} + 17
Diameter of clearance hole in the fixture		d _f =	[mm]	12	14	18
Minimum fixture thickness		t _{fix,min} =	[mm]	5	6	8
Installation towns	VZ	T _{inst} =	[Nm]	40	60	110
Installation torque -	A4 / HCR	T _{inst} =	[Nm]	40	55	100
Overstand		h _p ≤	[mm]	21,5 + t _{fix}	25,5 + t _{fix}	29,5 + t _{fix}
Length of fastener		L	[mm]	$h_{ef} + t_{fix} + 30,5$	$h_{ef} + t_{fix} + 35,5$	h _{ef} + t _{fix} + 43
Hexagon nut	width ac	ross nut	[mm]	17	19	24
Locknut	nut width across nut		[mm]	17	19	24

¹⁾ End of thread must be above the concrete surface

Wedge Anchor BZ3 dynamic	
Intended use Installation parameters	Annex B2

Table B2: Minimum thickness of concrete member, minimum spacings, edge distances and required area

Anchor size	M10	M12	M16			
Minimum member thickness depending on hef	h _{min} ≥	[mm]		1,5·h _{ef}		
Minimum edge distances and spacings						
Minimum adda diatanaa	C _{min}	[mm]	45	55	65	
Minimum edge distance	for s ≥	[mm]	see Table B4			
Minimum angainga	Smin	[mm]	40	50	65	
Minimum spacings	for c≥	[mm]		see Table B4		

The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in connection with the anchorage depth and the member thickness:

 $A_{sp,rqd} \leq A_{sp,ef}$

Required splitting area A_{sp,rqd} and idealized splitting area A_{sp,ef} acc. to Table B4.

Table B3: Applicable concrete thickness h_{sp} and area A_{sp} to determine characteristic edge distance c_{cr,sp}

Anchor size		M10	M12	M16		
Applicable concrete thickness	applicable concrete thickness h _{sp} [mm]			$\min(h; h_{ef} + 1.5 \cdot c \cdot \sqrt{2})$		
Anno to determine	VZ	Asp	[mm²]	$\frac{N_{Rk,sp}^0 + 2,040}{0,000693}$	$\frac{N_{Rk,sp}^0 + 3,685}{0,000692}$	$\frac{N_{Rk,sp}^0 + 3,738}{0,000875}$
Area to determine c _{cr,sp}	A4 HCR	A _{sp}	[mm²]	$\frac{N_{Rk,sp}^0 + 7,235}{0,000967}$	$\frac{N_{Rk,sp}^0 + 7,847}{0,000951}$	$\frac{N_{Rk,sp}^0 + 11,415}{0,000742}$

Wedge Anchor BZ3 dynamic	
Intended use Minimum spacings and edge distances Required area and applicable concrete thickness	Annex B3

Table B4: Areas to determine spacings and edge distances for installation

Anchor size				M10	M12	M16		
The following equation must be fulfilled for the calculation of the minimum spacing and edge distance during installation in combination with variable anchorage depth and member thickness:								
A _{sp,rqd} ≤ A _{sp,ef}								
Idealized splitting area A _{sp,ef} The spacings and edge distances shall be selected or rounded in steps of 5 mm.								
Member thickness								
Single anchor or an	chor group with s ≥ 3·c							
Effective anchorage	edepth	h _{ef} < 1,5	· c	$A_{sp,ef} =$	(6·c) · (1,5·c + h	ef) [mm²]		
Effective anchorage	edepth	h _{ef} ≥ 1,5	· c	A _{sp,ef} =	(6·c) · (3·c)	[mm²]		
Anchor group (s < 3	Anchor group (s < 3·c)							
Effective anchorage depth $h_{ef} < 1.5 \cdot c$ $A_{sp,ef} = (3 \cdot c + s) \cdot (1.5 \cdot c + h_{ef})$					+ h _{ef}) [mm²]			
Effective anchorage	edepth	h _{ef} ≥ 1,5	· c	$A_{sp,ef} =$	(3·c + s) · (3·c)	[mm²]		
Member thickness	: h ≤ h _{ef} + 1,5 · c							
Single anchor or an	chor group with s ≥ 3·c							
Effective anchorage	edepth	h _{ef} < 1,5	· c	$A_{sp,ef} =$	(6·c) · h	[mm²]		
Effective anchorage	edepth	h _{ef} ≥ 1,5	·c	$A_{sp,ef} =$	(6·c) · (h - h _{ef} + 1	,5·c) [mm²]		
Anchor group (s < 3	s·c)							
Effective anchorage	edepth	h _{ef} < 1,5	· c	A _{sp,ef} =	(3·c + s) · h	[mm²]		
Effective anchorage	edepth	h _{ef} ≥ 1,5	·c	$A_{sp,ef} =$	(3·c + s) · (h - h _e	_f + 1,5·c)[mm²]		
Required splitting	area Asp,rqd							
	cracked concrete	A _{sp,rqd}	[mm²]	23 700	31 500	42 300		
VZ	uncracked concrete	A _{sp,rqd}	[mm²]	34 700	41 300	50 200		
A4	cracked concrete	A _{sp,rqd}	[mm²]	25 900	29 800	44 300		
HCR	uncracked concrete	A _{sp,rqd}	[mm²]	35 700	35 300	54 800		

Wedge Anchor BZ3 dynamic	
Intended use Areas to determine spacings and edge distances	Annex B4

Installation instructions 90 Drill hole perpendicular to concrete surface. 1 If using a vacuum drill bit, proceed with step 3. Blow out dust. Alternatively, vacuum clean down to the bottom of the 2 hole. Drive in fastener with filling washer until effective anchorage depth is 3 reached. $\mathsf{T}_{\mathsf{inst}}$ Apply installation torque T_{inst} according to Table B1 by using torque MM wrench. Screw on locknut until hand tight then tighten 1/4 to 1/2 turn. 5 Fill the annular gap between anchor and fixture with mortar (compressive strength ≥ 40 N/mm², e.g. MKT Injection System VMH, VMZ or VMU plus). 6 Use enclosed reducing adapter. Observe the processing information of the mortar! The annular gap is completely filled, when excess mortar

Wedge Anchor BZ3 dynamic	
Intended use	Annex B5
Installation instructions	

seeps out.

Table C1: Characteristic values of fatigue resistance

Anchor size				M10	M12	M16	
Tension load							
Steel failure							
	VZ		[kN]	4,6	6,2	9,7	
Characteristic fatigue resistance	A4	$\Delta N_{\text{Rk},s,0,\infty}$	[kN]	3,2	5,3	9,2	
	HCR		[kN]	2,8	5,5	9,7	
Load-transfer factor for fastener groups		ψги	[-]		0,5		
Pull-out							
Characteristic fatigue res	istance	$\Delta N_{\text{Rk},p,0,\infty}$	[kN]		$0,5~N_{Rk,p}$		
Concrete cone and spli	tting failur	е					
Characteristic fatigue res	istanco	$\Delta N_{\text{Rk},c,0,\infty}$	[kN]		0,5 N _{Rk,c}		
Characteristic fatigue res	istance	$\Delta N_{\text{Rk},\text{sp},0,\infty}$	[kN]				
Effective anchorage dept	:h	h _{ef}	[mm]	60	70	85	
Shear load							
Steel failure without lev	er arm						
Charactaristic	VZ		[kN]	2,5	4,0	7,5	
Characteristic —— fatigue resistance ——	A4	$\Delta V_{Rk,s,0,\infty}$	[kN]	1,5	2,8	6,0	
_	HCR		[kN]	2,3	2,8	5,0	
Load-transfer factor for fastener groups		ψ_{FV}	[-]		0,5		
Concrete pry-out failure	е						
Characteristic fatigue res	istance	$\Delta V_{\text{Rk,cp},0,\infty}$	[kN]	0,5 V _{Rk,cp}			
Concrete edge failure							
Characteristic fatigue res	istance	$\Delta V_{\text{Rk,c,0,}\infty}$	[kN]	0,5 V _{Rk,c}			
Effective length of ancho	r	lf	[mm]	60	70	85	
Diameter of anchor		d_{nom}	[mm]	10	12	16	
Tension and shear load	l						
		γ̃Ms,fat	[-]	1,35			
Partial factor 1)		γMc,fat	[-]		1,5		
		γMsp,fat	[-]		1,5		
		γMp,fat	[-]		1,5	T	
Exponents for combined	loading	αs	[-]	0,5	0,5	0,7	
,		$lpha_{ t c}$	[-]		1,5		

¹⁾ In absence of other national regulations

Wedge Anchor BZ3 dynamic	
Performance Characteristic values of fatigue resistance	Annex C1

Table C2: Characteristic values for **tension loads** under static and quasi-static action, **steel**, **zinc plated**

Anchor size			M10	M12	M16		
Installation factor	γinst	[-]	1,0				
Steel failure							
Characteristic resistance	$N_{Rk,s}$	[kN]	30,4	44,9	79,3		
Partial factor 1)	γMs	[-]		1,5			
Pull-out							
Characteristic resistance in cracked concrete C20/25	N _{Rk,p,cr}	[kN]	15	22	30		
Increasing factor $N_{Rk,p,cr} = \psi_C \cdot N_{Rk,p,cr} (C20/25)$	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,265}$	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,339}$		
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p,ucr}$	[kN]	24	30	50		
Increasing factor $N_{Rk,p,ucr} = \psi_C \cdot N_{Rk,p,ucr} (C20/25)$	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,448}$	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.5}$	$\left(\frac{f_{ck}}{20}\right)^{0,203}$		
Splitting							
Characteristic resistance	N^0 Rk,sp	[kN]		min (N _{Rk,p} ; N ⁰ _{Rk,c} 3)))		
Characteristic edge distance ²⁾	Ccr,sp	[mm]	$\frac{A_{sp} + 0.8 \cdot (h_{sp} - h_{ef})^2}{(3.41 \cdot h_{sp} - 0.59 \cdot h_{ef})}$				
Characteristic spacing	Scr,sp	[mm]		2 · C _{cr,sp}			
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	60	70	85		
Characteristic edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}				
Characteristic spacing	Scr,N	[mm]		2 · C _{cr,N}			
Factor cracked concrete	k _{cr,N}	[-]	7,7				
uncracked concrete	k _{ucr,N}	[-]	11,0				

¹⁾ In absence of other national regulations

Wedge Anchor BZ3 dynamic	
Performance Characteristic values for tension loads, steel, zinc plated	Annex C2

 $^{^{2)}}$ Applicable concrete thickness $\overset{\circ}{h_{sp}}$ and area A_{sp} to determine characteristic edge distance $c_{cr,sp}$ according to Table B3

 $^{^{3)}\,}N^0_{\text{Rk,c}}$ according to EN 1992-4:2018

Table C3: Characteristic values for **tension loads** under static or quasi-static action, **A4** and **HCR**

Anchor size			M10	M12	M16		
Installation factor	γinst	[-]	1,0				
Steel failure							
Characteristic resistance	$N_{Rk,s}$	[kN]	30,4	44,9	74,6		
Partial factor 1)	γMs	[-]		1,5			
Pull-out							
Characteristic resistance in cracked concrete C20/25	N _{Rk,p,cr}	[kN]	17	22	35		
Increasing factor N _{Rk,p,cr} = ψ _C • N _{Rk,p,cr} (C20/25)	Ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,5}$	$\left(\frac{f_{ck}}{20}\right)^{0,435}$	$\left(\frac{f_{ck}}{20}\right)^{0,350}$		
Characteristic resistance in uncracked concrete C20/25	N Rk,p,ucr	[kN]	25	42	50		
Increasing factor N _{Rk,p,ucr} = ψ _C • N _{Rk,p,ucr} (C20/25)	ψc	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,364}$	$\left(\frac{f_{ck}}{20}\right)^{0,213}$	$\left(\frac{f_{ck}}{20}\right)^{0,196}$		
Splitting							
Characteristic resistance	N^0 Rk,sp	[kN]		min (N _{Rk,p} ; N^0 _{Rk,c} 3))			
Characteristic edge distance ²⁾	C _{cr,sp}	[mm]	$\frac{A_{sp} + 0.8 \cdot (h_{sp} - h_{ef})^2}{(3.41 \cdot h_{sp} - 0.59 \cdot h_{ef})}$				
Characteristic spacing	S _{cr,sp}	[mm]		2 · C _{cr,sp}			
Concrete cone failure							
Effective anchorage depth	h _{ef}	[mm]	60	70	85		
Characteristic edge distance	C _{cr,N}	[mm]	1,5 · h _{ef}				
Characteristic spacing	S _{cr,N}	[mm]	2 · C _{cr,N}				
Factor cracked concrete	k _{cr,N}	[-]	7,7				
uncracked concrete	k _{ucr,N}	[-]		11,0			

¹⁾ In absence of other national regulations

Wedge Anchor BZ3 dynamic	
Performance Characteristic values for tension loads, A4 and HCR	Annex C3

 $^{^{2)} \} Applicable \ concrete \ thickness \ h_{sp} \ and \ area \ A_{sp} \ according \ to \ Table \ B3 \ to \ determine \ characteristic \ edge \ distance \ c_{cr,sp}$

 $^{^{3)}\,}N^0_{Rk,c}$ according to EN 1992-4:2018

Table C4: Characteristic values for shear loads under static and quasi-static action

Anchor size	M10	M12	M16				
Installation factor			[-]		1,0		
Steel failure without lev	er arm						
Characteristic	VZ	V^0 Rk,s	[kN]	26,8	38,3	60,0	
resistance	A4 / HCR	V^0 Rk,s	[kN]	27,8	39,8	69,5	
Partial factor 1)		γMs	[-]		1,25		
Ductility factor		k ₇	[-]		1,0		
Steel failure with lever arm							
Characteristic bending	VZ	M^0 Rk,s	[Nm]	60	105	240	
resistance	A4 / HCR	M^0 Rk,s	[Nm]	55	99	223	
Partial factor 1)		γMs	[-]		1,25		
Concrete pry-out failur	е	•					
Dry out footor	VZ	k ₈	[-]	3,1	3,0	3,6	
Pry-out factor A4 / HCR		k ₈	[-]	2,8	3,3	3,4	
Concrete edge failure		•					
Effective length of fastener in shear loading		I _f	[mm]		h _{ef}		
Outside diameter of faste	ener	d_{nom}	[mm]	10	12	16	

¹⁾ In absence of other national regulations

Wedge Anchor BZ3 dynamic	
Performance Characteristic values for shear loads	Annex C4

Table C5: Characteristic values for seismic loading, performance category C1

Anchor size				M10	M12	M16	
Effective anchorag	e depth	h _{ef} ≥	[mm]	60	70	85	
Tension load							
Installation factor		γinst	[-]		1,0		
Steel failure	Steel failure						
Characteristic	VZ	$N_{\text{Rk,s,C1}}$	[kN]	30,4	44,9	79,3	
resistance	A4 / HCR	N _{Rk,s,C1}	[kN]	30,4	44,9	74,6	
Pull-out							
Characteristic	VZ	N _{Rk,p,C1}	[kN]	15,0	22,0	30,0	
resistance	A4 / HCR	N _{Rk,p,C1}	[kN]	17,0	22,0	35,0	
Shear load							
Steel failure withou	out lever arm						
Characteristic	VZ	$V_{Rk,s,C1}$	[kN]	24,4	33,8	52,3	
resistance	A4 / HCR	$V_{Rk,s,C1}$	[kN]	22,2	33,2	64,3	
Factor for anchorage without annular gar		αgap	[-]		1,0		

Table C6: Characteristic values for seismic loading, performance category C2

Anchor size				M10	M12	M16	
Effective anchorag	e depth	h _{ef} ≥	[mm]	60	70	85	
Tension load							
Installation factor		γinst	[-]		1,0		
Steel failure							
Characteristic	VZ	N _{Rk,s,C2}	[kN]	30,4	44,9	79,3	
resistance	resistance A4 / HCR		[kN]	30,4	44,9	74,6	
Pull-out							
Characteristic	VZ	N _{Rk,p,C2}	[kN]	12,5	19,0	35,2	
resistance	A4 / HCR	N _{Rk,p,C2}	[kN]	7,7	13,8	29,4	
Shear load							
Steel failure without	out lever arm						
Characteristic	VZ	$V_{Rk,s,C2}$	[kN]	19,0	28,0	43,3	
resistance A4 / HCR		$V_{Rk,s,C2}$	[kN]	15,9	25,6	46,1	
Factor for anchorages without annular gap α_{gap} [-]			[-]		1,0		

Wedge Anchor BZ3 dynamic	
Performance Characteristic resistance for seismic loading	Annex C5

Table C7: Characteristic values for tension and shear load under fire exposure, steel, zinc plated

Anchor size	M10	M12	M16			
Tension load						
Steel failure						
	R30			2,6	4,6	7,7
Characteristic resistance	R60	NI a	[LNI]	1,9	3,3	5,6
Characteristic resistance	R90	$N_{Rk,s,fi}$	[kN]	1,3	2,1	3,5
	R120			1,0	1,5	2,5
Shear load						
Steel failure without leve	er arm					
	R30	$V_{Rk,s,fi}$	[kN]	7,5	12,3	20,7
Charactariatia registance	R60			5,1	8,5	14,2
Characteristic resistance	R90			2,7	4,6	7,7
	R120			1,6	2,7	4,5
Steel failure with lever a	rm					
	R30			9,6	19,1	43,8
Charactaristic registers	R60	N 40	[Nlma]	6,6	13,1	30,1
Characteristic resistance	R90	$M^0_{Rk,s,fi}$	[Nm]	3,5	7,2	16,4
	R120			2,0	4,2	9,6

 $N_{\text{Rk},p,\text{fi}}$ and $N_{\text{Rk},c,\text{fi}}$ according to EN 1992-4:2018

Wedge Anchor BZ3 dynamic	
Performance Characteristic values under fire exposure, steel, zinc plated	Annex C6

Table C8: Characteristic values for tension and shear load under fire exposure, A4 and HCR

Anchor size				M10	M12	M16
Tension load						
Steel failure						
	R30			6,9	11,0	18,1
Characteristic registance	R60	NI	FIZN 17	5,0	8,0	13,1
Characteristic resistance	R90	$N_{Rk,s,fi}$	[kN]	3,1	4,9	8,1
	R120			2,1	3,4	5,6
Shear load						
Steel failure without leve	er arm					
	R30	$V_{Rk,s,fi}$	[kN]	17,6	32,0	52,6
Characteristic registance	R60			12,6	22,6	37,1
Characteristic resistance	R90			7,5	13,1	21,5
	R120			5,0	8,4	13,8
Steel failure with lever a	rm					
	R30			22,7	49,8	111,5
Charactariatia registere	R60	N 40	[Nlma]	16,2	35,1	78,6
Characteristic resistance	R90	M^0 Rk,s,fi	[Nm]	9,7	20,4	45,6
	R120			6,5	13,0	29,2

 $N_{\text{Rk},\text{p,fi}}$ and $N_{\text{Rk},\text{c,fi}}$ according to EN 1992-4:2018

Wedge Anchor BZ3 dynamic	
Performance Characteristic values under fire exposure, A4 and HCR	Annex C7

Table C9: Displacements under tension load, steel, zinc plated

Anchor size		M10	M12	M16				
Displacements under static or quasi-static action $\delta_{N0} = \delta_{N0\text{-factor}} ^* N \qquad \qquad \text{N: acting tension load} \\ \delta_{N\infty} = \delta_{N\infty\text{-factor}} ^* N$								
Cracked concrete								
Factor for Barbarana	$\delta_{\text{N0-factor}}$	[mm/kN]	0,05	0,04	0,03			
Factor for displacement -	δ _{N∞-factor}	[mm/kN]	0,20	0,15	0,11			
Uncracked concrete								
Caster for displacement	$\delta_{ extsf{N0-factor}}$	[mm/kN]	0,01	0,004	0,005			
Factor for displacement -	δ _{N∞-} factor	[mm/kN]	0,03	0,03	0,03			
Displacement under seismic action C2								
Displacements for DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	4,7	4,2	4,5			
Displacements for ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	16,1	12,9	12,8			

Table C10: Displacements under tension load, A4 and HCR

Anchor size			M10	M12	M16				
Displacements under static or quasi-static action $\delta_{N0} = \delta_{N0\text{-factor}} * N \qquad \qquad N: acting tension load \\ \delta_{N\infty} = \delta_{N\infty\text{-factor}} * N$									
Cracked concrete									
Factor for displacement -	δ N0-factor	[mm/kN]	0,06	0,05	0,02				
	δ _{N∞-factor}	[mm/kN]	0,17	0,16	0,08				
Uncracked concrete									
Factor for displacement	δ N0- factor	[mm/kN]	0,00	0,001	0,00				
Factor for displacement	δ _{N∞-} factor	[mm/kN]	0,05	0,05	0,05				
Displacement under seismic action C2									
Displacements for DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	4,1	5,7	5,1				
Displacements for ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	16,8	18,0	13,9				

Wedge Anchor BZ3 dynamic	
Performance Displacements under tension load	Annex C8

Table C11: Displacements under shear load, steel, zinc plated

Anchor size			M10	M12	M16		
Displacements under static or quasi-static action $\delta_{V0} = \delta_{V0\text{-factor}} {}^{\star} V \qquad \qquad V : \text{acting shear load} \\ \delta_{V\infty} = \delta_{V\infty\text{-factor}} {}^{\star} V$							
Factor for displacement	δ V0- factor	[mm/kN]	0,09	0,09	0,07		
	δ∨∞- factor	[mm/kN]	0,13	0,14	0,11		
Displacement under seismic action C2							
Displacements for DLS	δ V,C2(DLS)	[mm]	3,1	3,7	3,8		
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	5,5	9,9	9,6		

Table C12: Displacements under shear load, A4 and HCR

Anchor size			M10	M12	M16		
Displacements under static or quasi-static action $\delta_{V0} = \delta_{V0-factor} * V \qquad \qquad V: acting shear load \\ \delta_{V\infty} = \delta_{V\infty-factor} * V$							
Factor for displacement	δ _{V0- factor}	[mm/kN]	0,14	0,12	0,09		
	δ∨∞- factor	[mm/kN]	0,20	0,17	0,14		
Displacement under seismic action C2							
Displacements for DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	3,5	4,2	4,4		
Displacements for ULS	$\delta_{\text{V,C2(ULS)}}$	[mm]	8,4	11,8	11,1		

Wedge Anchor BZ3 dynamic		
Performance Displacements under shear load	Annex C9	