

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6209 of 16/09/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	Highload Anchor SZ
Product family to which the construction product belongs:	Mechanical fasteners for use in concrete
Manufacturer:	MKT-Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach Germany
Manufacturing plant(s):	MKT-Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach Germany
This UK Technical Assessment contains:	23 pages including 3 annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-00-0601: <i>Mechanical fasteners</i> for use in concrete

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1 Technical description of the product

The Highload Anchor SZ is an anchor manufactured of galvanized steel or manufactured of stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type SZ-B with threaded bolt,
- Anchor type SZ-S with hexagon head screw,
- Anchor type SZ-SK with countersunk washer and countersunk screw.

The product description is given in Annex A.

2 Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi static loading) Method A	See Annex C1 to C4
Characteristic resistance to shear load (static and quasi static loading)	See Annex C5 and C6
Characteristic resistance for seismic performance categories C1 and C2	See Annex C7 and C8
Displacements	See Annex C10 and C11
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Class A1	
Resistance to fire	See Annex C9	

3.3 Hygiene, health and the environment (BWR 3)

Not relevant

3.4 Safety and accessibility in use (BWR 4)

Not relevant

3.5 Protection against noise (BWR 5)

Not relevant

3.6 Energy economy and heat retention (BWR 6)

Not relevant

3.7 Sustainable use of natural resources (BWR 7)

Performance not assessed

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

According to UKAD No. 330232-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1 UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.

On behalf of the British Board of Agrément

20

Date of Issue: 16 September 2022

Hardy Giesler Chief Executive Officer

British Board of Agrément,

1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG

ANNEX A1 Product description / Installation

ANNEX A2 Product description / Marking

Table A1: Designation of fastener parts and materials

Designation	Materials galvanized \ge 5 μ m, acc. to EN ISO 4042:1999	Stainless steel A4
Threaded bolt	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
Washer	Steel, EN 10139:2016	Stainless steel, EN 10088:2014
Distance sleeve	Steel tube EN 10305-2:2016, EN 10305-3:2016;	Steel tube stainless steel, 1.4401, 1.4404 or 1.4571; EN 10217-7:2014, EN 10216-5:2013
Ring	Polyethylene	Polyethylene
Expansion sleeve	Steel, EN 10139:2016	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
Threaded cone	Steel EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014
Hexagon nut	Steel, Strength class 8, EN ISO 898-2:2012	Stainless steel, strength class 70, EN ISO 3506-2:2009
Hexagon head screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, strength class 70, EN ISO 3506-1:2009
Countersunk screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, strength class 70, EN ISO 3506-1:2009
Countersunk washer	Steel, EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2014, zinc plated
	Designation Threaded bolt Washer Distance sleeve Ring Expansion sleeve Threaded cone Hexagon nut Hexagon head screw Countersunk screw Countersunk washer	DesignationMaterials galvanized \geq 5 µm, acc. to EN ISO 4042:1999Threaded boltSteel, Strength class 8.8, EN ISO 898-1:2013WasherSteel, EN 10139:2016Distance sleeveSteel tube EN 10305-2:2016, EN 10305-3:2016;RingPolyethyleneExpansion sleeveSteel, EN 10139:2016Threaded coneSteel, EN 10139:2016Hexagon nutSteel, Strength class 8, EN 150 898-2:2012Hexagon head screwSteel, Strength class 8.8, EN ISO 898-1:2013Countersunk screwSteel, Strength class 8.8, EN ISO 898-1:2013Countersunk washerSteel, EN 10083-2:2006

ANNEX B1 Intended Use / Specifications

Specification of intended use									
Highload Anchor SZ, steel zinc plated	10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24	
Static or quasi-static action					/				
Seismic action (SZ-B and SZ-S)	-	C1 + C2							
Seismic action (SZ-SK)	-	- C1 + C2					-		
Fire exposure	R 30 R 120								
Highload Anchor SZ, stainless steel A4		12/M8	15/M10	18/M12	24/M16				
Static or quasi-static action			```	(
Seismic action (SZ-B and SZ-S)			C1 ·	+ C2					
Seismic action (SZ-SK)			C1 + C2		-				
Fire exposure			R30	. R120					

Base materials:

- Cracked and uncracked concrete
- Compacted, reinforced or unreinforced normal weight concrete (without fibres) according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal conditions, if no particular aggressive conditions exist (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Design according to EN 1992-4:2018 and Technical Report TR055

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the obligation of the person responsible for technical matters on site.
- Compliance with the effective anchorage depth. For fastenings with anchorage depths h_{ef} > h_{ef,min} the usable thickness of fixture is reduced by h_{ef} h_{ef,min}.
- Use as supplied by the manufacturer without replacing individual parts.
- Drilling of hole only by hammer drilling (use of vacuum drill bits is admissible)

ANNEX B2 Intended Use / Installation situation

ANNEX B3 Intended Use / Installation parameters, zinc plated steel

Fastener size				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Size of thread			[-]	M6	M8	M10	M12	M16	M16	M20	M24
Minimum effective anchorage depth		h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth		h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Nominal diameter of o	drill	d ₀ =	[mm]	10	12	15	18	24	24	28	32
Cutting diameter of d	rill bit	d _{cut} ≤	[mm]	10.45	12.5	15.5	18.5	24.55	24.55	28.55	32.7
Depth of drill hole		h ₁ ≥	[mm]	h _{ef} + 15	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30	h _{ef} + 30	h _{ef} + 35	h _{ef} + 30
Diameter of clearance hole in the fixture	е	d _f ≤	[mm]	12	14	17	20	26	26	31	35
Thickness of counters washer SZ-SK	sunk	t _{sk}	[mm]	4	5	6	7	-	-	-	-
Minimum thickness o fixture SZ-SK	ıf	t _{fix min²⁾}	[mm]	8	10	14	18	-	-	-	-
Installation	T _{inst} (S	, Z-B, SZ-S)	[Nm]	15	30	50	80	160	160	280	280
torque	T _{inst}	(SZ-SK)	[Nm]	10	25	55	70	-	-	-	-
Minimum thickness o member	of	h _{min}	[mm]	h _{ef} + 50	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100	h _{ef} + 115	h _{ef} + 125	h _{ef} + 150
Minimum spacing ^{1) 3)})	Smin	[mm]	50	50	60	70	100	100	125	150
cracked concrete		for c \geq	[mm]	50	80	120	140	180	180	300	300
Minimum edge distance ^{1) 3)}		C _{min}	[mm]	50	55	60	70	100	100	200	150
cracked concrete		for s \geq	[mm]	50	100	120	160	220	220	350	300
Minimum spacing ^{1) 3)})	Smin	[mm]	50	60	60	70	100	100	125	150
uncracked concrete		for $c \ge$	[mm]	80	100	120	140	180	180	300	300
Minimum edge distance ^{1) 3)}		Cmin	[mm]	50	60	60	70	100	100	200	150
uncracked concrete		for s ≥	[mm]	100	120	120	160	220	220	350	300

¹⁾ Intermediate values by linear interpolation

²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). ³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

ANNEX B4 Intended Use / Installation parameters, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16
Size of thread		[-]	M8	M10	M12	M16
Minimum effective anchorage depth	h _{ef,min}	[mm]	60	71	80	100
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150
Nominal diameter of drill bit	[mm]	12	15	18	24	
Cutting diameter of drill bit	[mm]	12.5	15.5	18.5	24.55	
Depth of drill hole	[mm]	h _{ef} + 20	h _{ef} + 24	h _{ef} + 25	h _{ef} + 30	
Diameter of clearance hole in the fixture	[mm]	14	17	20	26	
Thickness of countersunk washer SZ-S	[mm]	5	6	7	-	
Minimum thickness of fixture SZ-SK	t _{fix min} ²⁾	[mm]	10	14	18	-
	T _{inst} (SZ-B)	[Nm]	35	55	90	170
Installation torque	T _{inst} (SZ-S)	[Nm]	30	50	80	170
	Tinst (SZ-SK)	[Nm]	17.5	42.5	50	-
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100
Minimum spacing ^{1) 3)}	Smin	[mm]	50	60	70	80
cracked concrete	for $c \ge$	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	C _{min}	[mm]	50	60	70	80
cracked concrete	for s \geq	[mm]	80	120	160	200
Minimum spacing ^{1) 3)}	S _{min}	[mm]	50	60	70	80
uncracked concrete	for c \geq	[mm]	80	120	140	180
Minimum edge distance ^{1) 3)}	Cmin	[mm]	50	85	70	180
uncracked concrete	for s ≥	[mm]	80	185	160	80

¹⁾ Intermediate values by linear interpolation ²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole). ³⁾ For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

ANNEX B5 Intended Use / Installation instructions

ANNEX C1 Performance / Characteristics values for tensions loads, cracked concrete, zinc plated steel

Table C1: Characteristic v	alues for	tensior	n load, cra	acked cor	ncrete, sta	atic or qua	asi-static	action, ste	el zinc pla	ated
Fastener size		_	10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L M16L	28/M20	32/M24
Installation factor	γinst	[-]					1.0			
Steel failure	-									
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	126	126	196	282
Partial factor	γMs	[-]	1.5							
Pull-out failure	Pull-out failure									
Characteristic resistance cracked concrete C20/25	in N _{Rk,p}	[kN]	5	12	16	25	36	44	50	65
Increasing factor for $N_{Rk,p}$	ψс	[-]				$\left(\frac{f_{cl}}{2}\right)$	$\left(\frac{k}{0}\right)^{0.5}$			
Concrete cone failure										
Minimum effective anchorage depth	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Factor for cracked concrete	$\mathbf{k}_1 = \mathbf{k}_{cr,N}$	[-]				7	7.7			

ANNEX C2 Performance / Characteristics values for tensions loads, cracked concrete, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16		
Installation factor	γinst	[-]		1.	0	-		
Steel failure								
SZ-B						1		
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110		
Partial factor	γMs	[-]		1.	5			
SZ-S and SZ-SK								
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110		
Partial factor	γMs	[-]	1.87					
Pull-out failure								
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	25	36		
Increasing factor for $N_{Rk,p}$	Ψc	[-]		$\left(\frac{f_{ck}}{20}\right)$	-)0.5			
Concrete cone failure								
Minimum effective anchorage depth	$h_{\text{ef,min}}$	[mm]	60	71	80	100		
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150		
Factor for cracked concrete	k ₁ = k _{cr,N}	[-]	7.7					

ANNEX C3 Performance / Characteristics values for tensions loads, uncracked concrete, zinc plated steel

Table C3: Characteristic value	es for ten	sion lo	ad, uncra	acked co	ncrete, st	atic or qu	asi-static	caction, s	steel zinc	plated
Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Installation factor	γinst	[-]				1	.0			
Steel failure		_			-			-	-	
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	126	126	196	282
Partial factor	γMs	[-]				1	.5			
Pull-out failure										
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	17	20	30	36	50	1)	70	1)
Increasing factor for $N_{Rk,p}$	ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5} \qquad \qquad - \left(\frac{f_{ck}}{20}\right)^{0.5} \qquad -$						-	
Splitting failure (The higher	resistanc	ce of ca	ase 1 and	d case 2	may be a	pplied)				
Case 1					[]					
Characteristic resistance in uncracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	30	40	70	50	70
Edge distance	Ccr,sp	[mm]				1.5	h _{ef}			
Increasing factor for $N^{0}_{Rk,sp}$	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)$	$\frac{1}{2}$ 0.5			
Case 2										
Characteristic resistance in uncracked concrete	$N^0_{Rk,sp}$	[kN]				min (N _{Rk}	,p;			
Edge distance	Ccr,sp	[mm]			2.5 h _{ef}			1.5 h _{ef}	2.5 h _{ef}	2 h _{ef}
Concrete cone failure										
Minimum effective anchorage depth	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximum effective anchorage depth	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210
Edge distance	Ccr,N	[mm]	1.5 h _{ef}							
Factor for uncracked koncrete	$\mathbf{k}_1 = \mathbf{k}_{ucr,N}$	[-]				11	.0			

¹⁾ $N_{Rk,p} = N_{Rk,c}^{0}$ calculated with $h_{ef,min}$

ANNEX C4 Performance / Characteristics values for tensions loads, uncracked concrete, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16	
Installation factor	γinst	[-]	1.0				
Steel failure							
SZ-B							
Characteristic resistance	N _{Rk,s}	[kN]	26	41	60	110	
Partial factor	γMs	[-]		1	.5		
SZ-S and SZ-SK							
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110	
Partial factor	γMs	[-]	1.87				
Pull-out failure				-	-	-	
Characteristic resistance in uncracked concrete C20/25	N _{Rk,p}	[kN]	16	25	35	50	
Increasing factor for $N_{Rk,p}$	ψс	[-]		$\left(\frac{f_{ck}}{20}\right)$	$\frac{1}{10000000000000000000000000000000000$		
Splitting failure							
Edge distance	Ccr,sp	[mm]	180	235	265	300	
Concrete cone failure		•		÷			
Minimum effective anchorage depth	h _{ef,min}	[mm]	60	71	80	100	
Maximum effective anchorage depth	h _{ef,max}	[mm]	100	110	130	150	
Edge distance	Ccr,N	[mm]		1.5	h _{ef}	•	
Factor for uncracked concrete	$\mathbf{k}_1 = \mathbf{k}_{ucr.N}$	[-]		11	1.0		

ANNEX C5 Performance / Characteristics values for shear loads, zinc plated steel

Fastener size			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Steel failure without	lever arn	n								
SZ-B										
Characteristic resistance	$V^0_{Rk,s}$	[kN]	16	25	36	63	91	91	122	200
Ductility factor	k 7	[-]				1.	.0			
Partial factor	γMs	[-]				1.:	25			
SZ-S and SZ-SK										
Characteristic resistance	V ⁰ Rk,s	[kN]	18	30	48	73	126	126	150	200
Ductility factor	k 7	[-]	1.0							
Partial factor	γMs	[-]		-	_	1.:	25	-	-	-
Steel failure with lev	ver arm									
SZ-B, SZ-S und SZ-S	SK		ſ	ſ	1				1	
Anchorage depth	h _{ef,min} ≥	[mm]	50	60	71	80	100	115	125	150
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	12	30	60	105	266	266	519	898
Partial factor	γMs	[-]	1.25							
Anchorage depth	h _{ef} ≥	[mm]	64	73	90	106	138	138	158	188
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	40	58	119	234	529	529	847	1343
Partial factor	γMs	[-]				1.2	25			
Concrete pry-out fai	lure	-		-			-	-		
Pry-out factor	k ₈	[-]	1.8 ¹⁾				2.0			
Concrete edge failu	re	4	•	<u>.</u>						
Effective length of fastener in shear loading	lf	[mm]				h	ef			
Outside diameter of fastener	d_{nom}	[mm]	10	12	15	18	24	24	28	32
⁾ k ₈ = 2.0 for h _{ef} ≥ 60 mm										

ANNEX C6 Performance / Characteristics values for shear loads, stainless steel A4

Fastener size		[12/M8	15/M10	18/M12	24/M16	
Steel failure without lever arm				1	1		
Characteristic resistance	$V^0_{Rk,s}$	[kN]	24	37	62	92	
SZ-B							
Ductility factor	k 7	.0					
Partial factor	γMs	[-]		1.	25		
SZ-S							
Ductility factor	k 7	[-]		1.	0		
Partial factor	γMs	[-]		1.	36		
SZ-SK							
Ductility factor	k 7	[-]		0.8		-	
Partial factor	γMs	[-]		-			
Steel failure with lever arm							
Anchorage depth	h _{ef,min} ≥	[mm]	60	71	80	100	
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	26	52	92	232	
SZ-B	-			•	•		
Partial factor	γMs	[-]	1.25				
SZ-S and SZ-SK							
Partial factor	γMs	[-]		1.	56		
SZ-B, SZ-S and SZ-SK							
Anchorage depth	h _{ef} ≥	[mm]	73	90	106	138	
Characteristic bending resistance	M ⁰ Rk,s	[Nm]	103	211	374	847	
Partial factor	γMs	[-]		1.	25		
Concrete pry-out failure							
Pry-out factor	k ₈	[-]		2	.0		
Concrete edge failure							
Effective length of fastener in shear loading	lf	[mm]		h	ef		
Outside diameter of fastener	d _{nom}	[mm]	12	15	18	24	

ANNEX C7 Performance / Characteristics values for seismic action, zinc plated steel

Fastener size			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24		
Tension load											
Installation factor	γinst	[-]				1.0					
Steel failure				1							
Characteristic resistance category C1	NRk,s,eq,C1	[kN]	29	46	67	126	126	196	282		
Characteristic resistance category C2	NRk,s,eq,C2	[kN]	29	46	67	126	126	196	282		
Partial factor	γMs	[-]				1.5					
Pull-out failure			•								
Characteristic resistance category C1	NRk,p,eq,C1	[kN]	12	16	25	36	44.4	50.3	63.3		
Characteristic resistance category C2	N _{Rk,p,eq,C2}	[kN]	5.4	16.4	22.6	29.0	41.2	43.6	63.3		
Shear load											
Steel failure without lever	r arm										
SZ-B											
Characteristic resistance category C1	V _{Rk,s,eq,C1}	[kN]	18.0	27.1	43.4	51.9	51.9	96.4	160.1		
Characteristic resistance category C2	V _{Rk,s,eq,C2}	[kN]	12.7	20.5	31.5	50.1	50.1	67.1	108.1		
SZ-S			•	•	L						
Characteristic resistance category C1	V _{Rk,s,eq,C1}	[kN]	18.0	27.1	43.4	51.9	51.9	96.4	160.1		
Characteristic resistance category C2	V _{Rk,s,eq,C2}	[kN]	12.7	20.5	31.5	69.3	69.3	67.1	108.1		
SZ-SK			•	•	L						
Characteristic resistance category C1	V _{Rk,s,eq,C1}	[kN]	25.2	36.5	50.4	-	-	-	-		
Characteristic resistance category C2	V _{Rk,s,eq,C2}	[kN]	19.2	29.3	39.4	-	-	-	-		
Factor for annular gap	lphagap	[-]				0.5			<u> </u>		
Partial factor	γMe	[-]	1 25								

ANNEX C8 Performance / Characteristics values for seismic action, stainless steel A4

Fastener size			12/M8	15/M10	18/M12	24/M16	
Tension load							
Installation factor	[-]	1.0					
Steel failure							
Characteristic resistance, category C1	N _{Rk,s,eq,C1}	[kN]	26	41	60	110	
Characteristic resistance, category C2	NRk,s,eq,C2	[kN]	26	41	60	110	
Partial factor SZ-B	γMs	[-]		1.	5		
Partial factor SZ-S and SZ-SK	[-]		1.	87			
Pull-out failure							
Characteristic resistance, category C1	NRk,p,eq,C1	[kN]	9	16	26	36	
Characteristic resistance, category C2	NRk,p,eq,C2	[kN]	4.8	16.5	24.8	44.5	
Shear load				-	-	<u>-</u>	
Steel failure without lever arm							
SZ-B							
Characteristic resistance, category C1	V _{Rk,s,eq,C1}	[kN]	9.6	13.3	25.4	75.4	
Characteristic resistance, category C2	V _{Rk,s,eq,C2}	[kN]	9.7	14.0	18.0	32.2	
Partial factor	γMs	[-]	1.25				
SZ-S							
Characteristic resistance, category C1	V _{Rk,s,eq,C1}	[kN]	9.6	13.3	25.4	75.4	
Characteristic resistance, category C2	V _{Rk,s,eq,C2}	[kN]	9.7	14.0	18.0	32.2	
Partial factor	γMs	[-]		1.	36		
SZ-SK							
Characteristic resistance, category C1	V _{Rk,s,eq,C1}	[kN]	11.5	23.3	31.6	-	
Characteristic resistance, category C2	V _{Rk,s,eq,C2}	[kN]	10.8	17.4	15.4	-	
Partial factor	γMs	[-]		1.36	-	-	
Factor for annular gap	Ωdap	[-]		0	5	•	

ANNEX C9 Performance / Characteristics values under fire exposure

Fastener size				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Tension load						•					
Steel failure											
Steel zinc plate	d					_				-	-
	R30	_		1.0	1.9	4.3	6.3	11	.6	18.3	26.3
Characteristic	R60	- Nouse	[kN]]	0.8	1.5	3.2	4.6	8.	6	13.5	19.5
resistance	R90	INRK,S,TI		0.6	1.0	2.1	3.0	5.	.0	7.7	12.6
	R120			0.4	0.8	1.5	2.0	3.1		4.9	9.2
Stainless steel	A4					_				-	-
	R30	_		-	6.1	10.2	15.7	29.2	-	-	-
Characteristic	R60	- Nouse	[LN]	-	4.4	7.3	11.1	20.6	-	-	-
resistance	R90	INRK,S,TI		-	2.6	4.3	6.4	12.0	-	-	-
	R120			-	1.8	2.8	4.1	7.7	-	-	-
Shear load											
Steel failure wit	hout leve	r arm									
Steel zinc plate	d										
	R30			1.0	1.9	4.3	6.3	11	.6	18.3	26.3
Characteristic	R60			0.8	1.5	3.2	4.6	8	6	13.5	19.5
resistance	R90	V Rk,s,fi	נגואן	0.6	1.0	2.1	3.0	5.	0	7.7	12.6
	R120			0.4	0.8	1.5	2.0	3.1		4.9	9.2
Stainless steel	A4										
	R30			-	14.3	22.7	32.8	61.0	-	-	-
Characteristic	R60			-	11.1	17.6	25.5	47.5	I	-	-
resistance	R90	V Rk,s,fi	נגואן	-	7.9	12.6	18.3	34.0	I	-	-
	R120	_		-	6.3	10.0	14.6	27.2	-	-	-
Steel failure wit	h lever ar	m									
Steel zinc plate	d										
	R30			0.8	2.0	5.6	9.7	24	.8	42.4	83.6
Characteristic	R60		[Nim]	0.6	1.5	4.1	7.2	18	.3	29.8	61.9
resistance	R90	- IVI°Rk,s,fi	[INITI]	0.4	1.0	2.7	4.7	11	11.9		40.1
	R120			0.3	0.8	1.9	3.1	6	6	10.7	29.2
Stainless steel	A4										
	R30			-	6.2	13.2	24.4	61.8	-	-	-
Characteristic	R60	_ N/0	[NIm]	-	4.5	9.4	17.2	43.6	-	-	-
resistance	R90	IVI ~ Rk,s,fi		-	2.7	5.6	10.0	25.3	-	-	-
	R120	_		-	18	36	64	16.2	-	-	-

ANNEX C10 Performance / Displacements under tension and shear load, zinc plated steel

Fastener size			10/ M6	12/ M8	15/ M10	18/ M12	24/ M16	24/ M16L	28/ M20	32/ M24
Tension load				•		•	•			
Tension load in cracked concrete	N	[kN]	2.4	5.7	7.6	12.3	17.1	21.1	24	26.2
Displacement	δηο	[mm]	0.5	0.5	0.5	0.7	0.8	0.7	0.9	1.4
Displacement	δn∞	[mm]	2.0	2.0	1.3	1.3	1.3	1.3	1.4	1.9
Tension load in uncracked concrete	Ν	[kN]	8.5	9.5	14.3	17.2	24	29.6	34	43
Displacement	δνο	[mm]	0.8	1.0		1.1		1.3	0.3	0.7
	δ_{N^∞}	[mm]	3	.4		1.7		2.3	1.4	0.7
Seismic action C2	_	[max 1]		0.0	2.0	5 0	0.0		4.0	5 0
Displacement for ULS	ðN,eq (DLS)	[mm]	-	3.3 12.2	3.U	5.0	3.0	3.0	4.U	5.3
Shoar load	ON,eq (ULS)	[[1111]]	-	12.2	11.3	10.0	9.2	9.2	13.0	12.4
Shear load										
Shear load in cracked and uncracked	v	[kN]	9.1	14	20.7	35.1	52.1	52.1	77	86.6
	δνο	[mm]	2.5	2.1	2.7	3.0	5.1	5.1	4.3	10.5
Displacement	δv∞	[mm]	3.8	3.1	4.1	4.5	7.6	7.6	6.5	15.8
Seismic action C2										
Displacement for DLS	δ V,eq (DLS)	[mm]	-	2.3	3.1	3.0	2.6	2.6	1.6	6.1
Displacement for ULS	$\delta \text{V,eq} \left(\text{ULS}\right)$	[mm]	-	4.8	6.4	6.1	6.6	6.6	4.8	9.5
SZ-S						1		-		
Shear load in cracked and uncracked concrete	V	[kN]	10.1	17.1	27.5	41.5	72	72	77	86.6
Displacement	δνο	[mm]	2.9	2.5	3.6	3.5	7.0	7.0	4.3	10.5
Displacement	δv∞	[mm]	4.4	3.8	5.4	5.3	10.5	10.5	6.5	15.8
Seismic action C2						1		1		1
Displacement for DLS	δ V,eq (DLS)	[mm]	-	2.3	3.1	3.0	3.3	3.3	1.6	6.1
Displacement for ULS	δ V,eq (ULS)	[mm]	-	4.8	6.4	6.1	8.2	8.2	4.8	9.5
SZ-SK				[[[[
Shear load in cracked a uncracked concrete	nd V	[kN]	10.1	17.1	27.5	41.5	-	-	-	-
Displacement	δνο	[mm]	2.9	2.5	3.6	3.5	-	-	-	-
Polomia action 00	δv∞	[mm]	4.4	3.8	5.4	5.3	-	-	-	-
					_	_				
Displacement for DLS	$\delta v, \text{eq} (\text{DLS})$	[mm]	-	3.1	3.9	3.9	-	-	-	-
Displacement for ULS	$\delta_{V,eq}$ (ULS)	[mm]	-	10.2	11.8	13.0	-	-	-	-

ANNEX C11 Performance / Displacements under tension and shear load, stainless steel A4

Eastanar siza		-	12/M9	15/M10	19/M12	24/M16
			12/10	19/10/10		24/1110
			4.0		40.4	47.0
l ension load in cracked concrete	N	[KN]	4.3	7.6	12.1	17.0
Displacement	δνο	[mm]	0.5	0.5	1.3	0.5
Displacement	δn∞	[mm]	1.2	1.6	1.8	1.6
Tension load in uncracked concrete	Ν	[kN]	7.6	11.9	16.7	24.1
Diaplacement	δνο	[mm]	0.2	0.3	1.2	1.5
Displacement	δn∞	[mm]	1.1	1.1	1.1	1.1
Seismic action C2						
Displacement for DLS	δ N,eq (DLS)	[mm]	4.7	4.5	4.3	4.9
Displacement for ULS	δ N,eq (ULS)	[mm]	13.3	12.7	9.7	10.1
Shear load				-	-	2
Shear load in cracked concrete	V	[kN]	13.9	21.1	34.7	50.8
Displacement	δνο	[mm]	3.4	4.9	4.8	6.7
Displacement	δv∞	[mm]	5.1	7.4	7.1	10.1
Seismic action C2						
SZ-B and SZ-S						
Displacement for DLS	δ V,eq (DLS)	[mm]	2.8	3.1	2.6	3.3
Displacement for ULS	δ V,eq (ULS)	[mm]	5.6	5.8	5.0	6.9
SZ-SK				·	•	
Displacement for DLS	$\delta_{V,eq~(DLS)}$	[mm]	2.5	2.8	2.9	-
Displacement for ULS	δ V.eq (ULS)	[mm]	5.8	5.9	6.9	-

British Board of Agrément, 1st Floor Building 3

1st Floor Building 3 Hatters Lane Croxley Park Watford WD18 8YG