

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-23/6827 of 02/05/2023
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	Drop-in Anchor E / ES
Product family to which the construction product belongs:	Fixings
Manufacturer:	MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach
Manufacturing plant(s):	MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach
This UK Technical Assessment contains:	20 pages including 3 Annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330747-00-0601 Fasteners for use in concrete for redundant non-structural systems

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

The Drop-in anchor E / ES is a fastener made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod according to Annex A2.

The product description is given in Annex A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this UK Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1. Mechanical resistance and stability (BWR 1)

Not relevant.

3.2. Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C5

3.3. Health, hygiene and the environment (BWR 3)

Not relevant.

3.4. Safety and accessibility in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance for all load directions and modes of failure for simplified design	See Annexes B3, C1 to C4
Durability	See Annex B1

3.5. Protection against noise (BWR 5)

Not relevant.

3.6. Energy economy and heat retention (BWR 6)

Not relevant.

3.7. Sustainable use of natural resources (BWR 7)

No performance assessed.

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1. System of assessment and verification of constancy of performance

According to UKAD No. 330747-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011) as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 2+ applies.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1. UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- UKTA number.

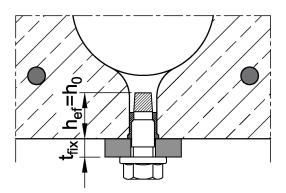
On behalf of the British Board of Agrément

) |

Date of Issue: 2 May 2023

Hardy Giesler Chief Executive Officer

British Board of Agrément,

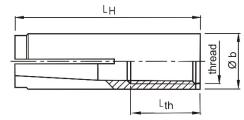

1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG

Drop-in Ancl	hor E / ES				
	Ancl	hor sizes a	and variations		
Drop-in Anch	or E (<u>withou</u> t shoulder)		Drop-in Anch	or ES (<u>with</u> shoulder)	
Anchorage de	epth h_{ef} ≥ 30 mm (zinc plated, A	4 or HCR)		•	
E M6x30		\bigcirc	ES M6x30		O
E M8x30 E M8x40		0	ES M8x30 ES M8x40		
E M10x40 E M12x50		\bigcirc	ES M10x30 (zinc plated) ES M10x40		
E M16x65			ES M12x50 ES M16x65		
Drop-in Anch	or ES (<u>with</u> shoulder)			4	
Anchorage de	epth h _{ef} = 25 mm (zinc plated)				
ES M6x25 ES M8x25 ES M10x25 ES M12x25		\bigcirc			
Installation si	tuation E/ES in concrete			uation ES in precas abs for hef = 25 mm	
					c
		W e d _b h _{ef} t _{fix} c	= anchorage	less kness ≥35mm (or ≥ 30 e depth of fixture	mm, see Annex C3)
Drop-in And	chor E / ES				
Product desc Anchor sizes a	r iption nd variations / Installation situat	ions			Annex A1

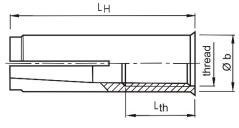
Part	Designation	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel HCR
1	Anchor sleeve	Cold formed or machining steel, galvanized, EN ISO 4042:2022	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, EN ISO 3506:2020	Stainless steel, 1.4529, 1.4565, EN 10088:2014, EN ISO 3506:2020
2	Cone	Cold formed or machining steel	Stainless steel (e.g. 1.4401, 1.4 EN 10088:2014	404, 1.4571)

Requirements on the fastening screw or the threaded rod and nut according to the engineering documents:

- Minimum screw-in depth L_{sdmin} see Table B1 and B2
- The length of screw or the threaded rod shall be determined depending on the thickness of fixture t_{fix}, available thread length L_{th} (= maximum screw-in depth) and the minimum screw-in depth L_{sdmin}.
- A₅ > 8 % Ductility
- Materials
 - Steel, zinc plated, property class 4.6 / 4.8 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2022
 - Stainless steel A4 or high corrosion resistant steel HCR, property class 70 or 80 according to EN ISO 3506:2020


Drop-in Anchor E / ES

Product description Materials


Annex A2

Anchor sleeve

Anchor version without shoulder (E)

Anchor version with shoulder (ES)

Cone

remaining sizes

M6x25 to M12x25, M6x30 and M10x30

Table A2: Dimensions and marking

HCR high corrosion resistant steel

Marking: see Table A2

e.g.:

Е

ES

M8

40

A4

⇒ E M8x40

size of thread

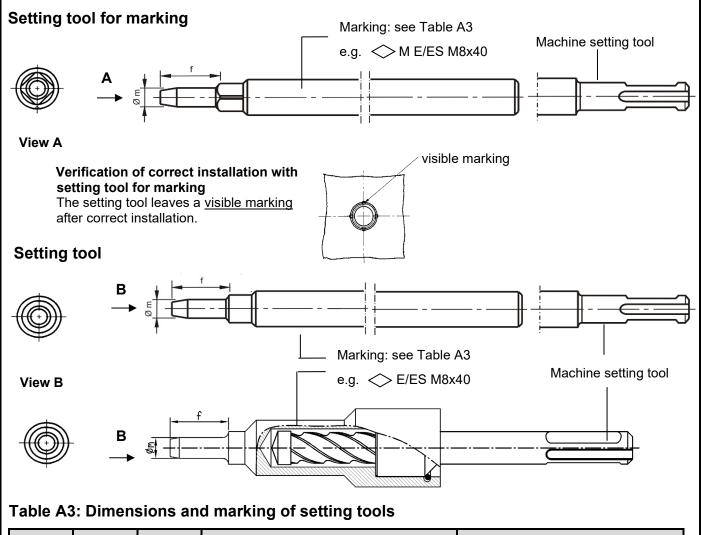
stainless steel

additional marking

anchorage depth

identifying mark of manufacturing plant

anchor identity (version without shoulder) anchor identity (version with shoulder)


Anchor	An	chor s	sleeve)		Marking		
size	thread	Øb	L _H	L _{th}	Version E (without sleeve)	Version ES (with sleeve)	alternative	Cone
M6x25	M6	8	25	12	-	ES M6x25	-	
M6x30	M6	8	30	13	♦ E M6x30	ES M6x30	E M6	
M8x25	M8	10	25	12	-	♦ ES M8x25	-	
M8x30	M8	10	30	13	<>> E M8x30	ES M8x30	E M8	
M8x40	M8	10	40	20	<>> E M8x40	S M8x40	⇒ E M8x40	
M10x25	M10	12	25	12	-	S M10x25	-	
M10x30	M10	12	30	12	-	ES M10x30	✓ E M10x30	
M10x40	M10	12	40	15	<> E M10x40	ES M10x40	○ E M10	
M12x25	M12	15	25	12	-	ES M12x25	-	
M12x50	M12	15	50	18	◇ E M12x50	ES M12x50	⇐ E M12	
M16x65	M16	19,7	65	23	<>> E M16x65	ES M16x65	E M16	
							Dime	nsions in mm

Drop-in Anchor E / ES

Product description

Dimensions and Marking

Annex A3

Anchor	Øm	f		Setting tool fo	r ma	arking	Setting tool			
size	9 m			Marking		alternative	Marking		a	Ilternative
M6x25	4,9	17	\diamond	M ES M6x25		-	\diamond	ES M6x25		-
M6x30	4,9	17	\diamond	M E/ES M6x30	\diamond	M E M6	\diamond	E/ES M6x30	\diamond	EM6
M8x25	6,4	17	\diamond	M ES M8x25		-	\diamond	ES M8x25		-
M8x30	6,4	18	\diamond	M E/ES M8x30	\diamond	M E M8	\diamond	E/ES M8x30	\diamond	E M8
M8x40	6,4	28	\diamond	M E/ES M8x40	\diamond	M E M8x40	\diamond	E/ES M8x40	\diamond	E M8x40
M10x25	8,0	18	\diamond	M ES M10x25		-	\diamond	ES M10x25		-
M10x30	8,0	18	\diamond	M ES M10x30	\diamond	M E M10x30	\diamond	ES M10x30	\diamond	E M10x30
M10x40	8,0	24	\diamond	M E/ES M10x40	\diamond	M E M10	\diamond	E/ES M10x40	\diamond	E M10
M12x25	10,0	15,5	\diamond	M ES M12x25		-	\diamond	ES M12x25		-
M12x50	10,0	30	\diamond	M E/ES M12x50	\diamond	M E M12	\diamond	E/ES M12x50	\diamond	E M12
M16x65	13,5	36	\diamond	M E/ES M16x65	\diamond	M E M16	\diamond	E/ES M16x65	\diamond	E M16
			-						Din	nensions in mm

Drop-in Anchor E / ES

Product description

Setting tools / Dimensions and marking of setting tools

Annex A4

Specifications of intended use

Drop in Anchor E / ES	Anchorage depth h _{ef} ≥ 30 mm									
Drop-in Anchor E / ES	M6x30	M6x30 M8x30 M8x40 M10x30				M12x50	M16x65			
Steel, zinc plated		\checkmark								
Stainless steel A4 and high corrosion resistant steel HCR	✓			- ✓						
Static and quasi-static loads				✓						
Fire exposure				\checkmark						
Cracked and uncracked concrete	✓									
Solid concrete C20/25 to C50/60				✓						

Drop-in Anchor ES	Anch	norage dep	oth h _{ef} = 25	5 mm		
Drop-in Alichor ES	M6x25	M8x25	M10x25	M12x25		
Steel, zinc plated		۲	/			
Stainless steel A4 and high corrosion resistant steel HCR			-			
Static and quasi-static loads	✓					
Fire exposure (solid concrete, C20/25 to C50/60)	✓					
Cracked and uncracked concrete	✓					
Solid concrete C12/15 to C50/60	\checkmark					
Precast pre-stressed hollow core slabs C30/37 to C50/60	✓					

Use only for redundant, non-structural systems!

Base materials:

 Compacted, reinforced or unreinforced normal weight concrete (without fibres) according to EN 206:2013 + A2:2021

Use conditions:

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal conditions, if no particularly aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particularly aggressive conditions exist (high corrosion resistant steel)

Note: Particularly aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurisation plants or road tunnels where de-icing materials are used.)

Drop-in Anchor E / ES

Intended use Specifications Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer
- Anchorages are designed according to EN 1992-4:2018 (if necessary in connection with TR 055)
 - Anchorages in solid concrete: design method B
 - Anchorages in precast pre-stressed hollow core slabs: design method C

Installation:

- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools
- Drill hole by hammer drilling or vacuum drilling

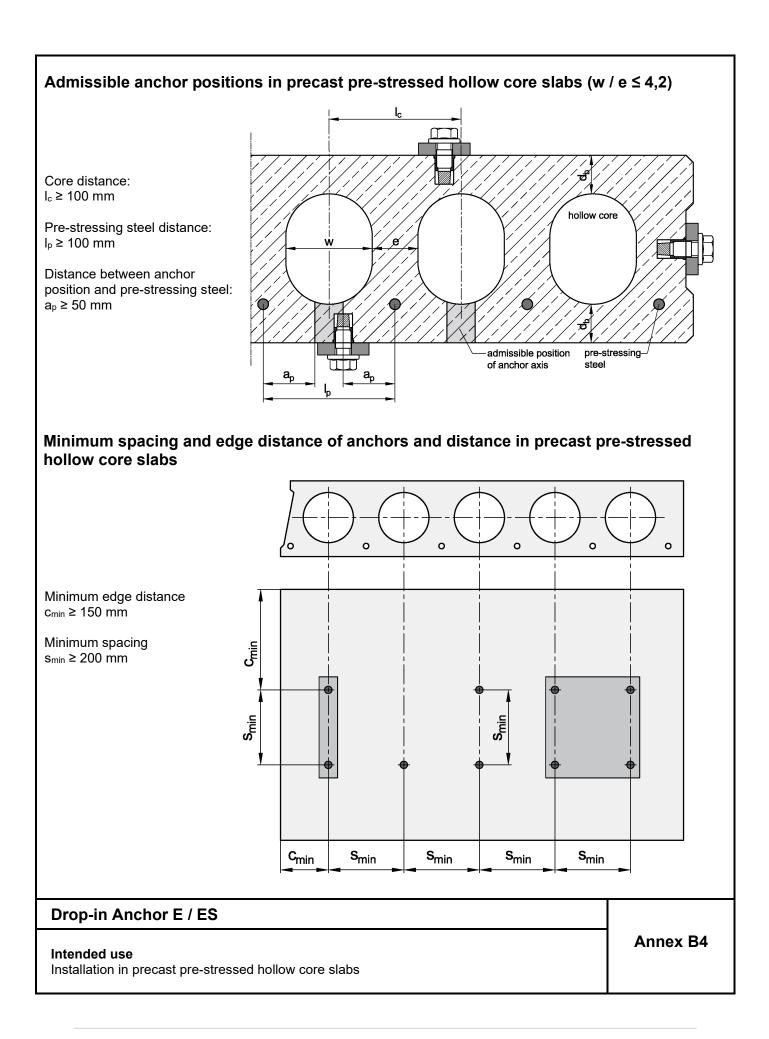
Drop-in Anchor E / ES

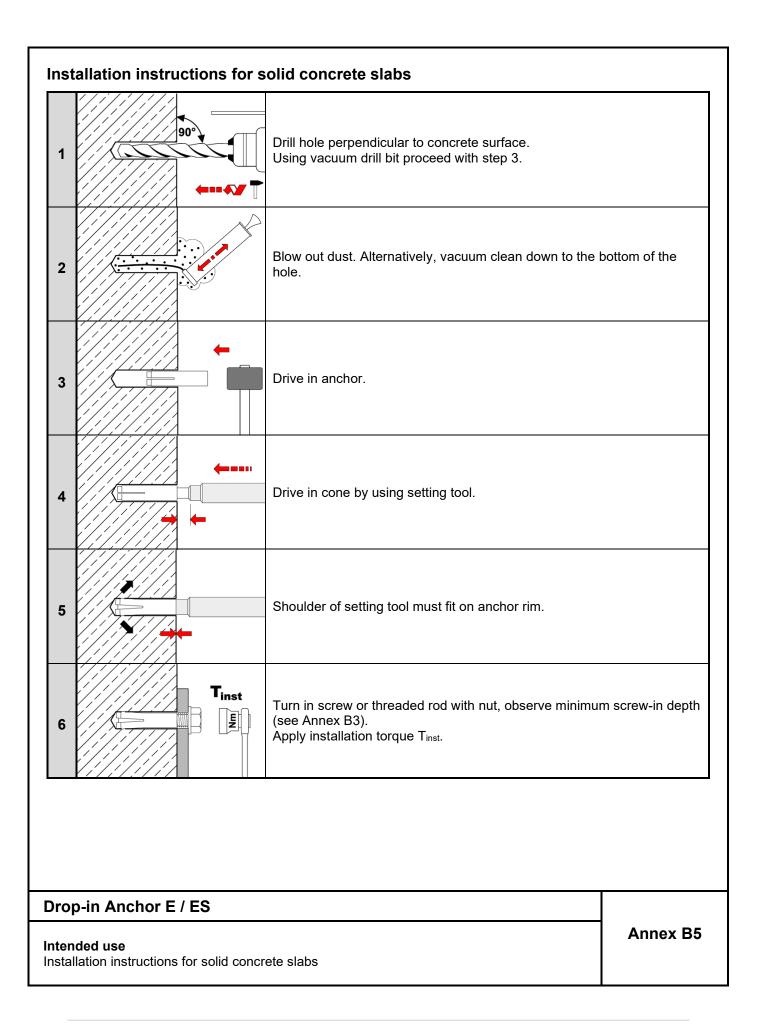
Intended use Specifications

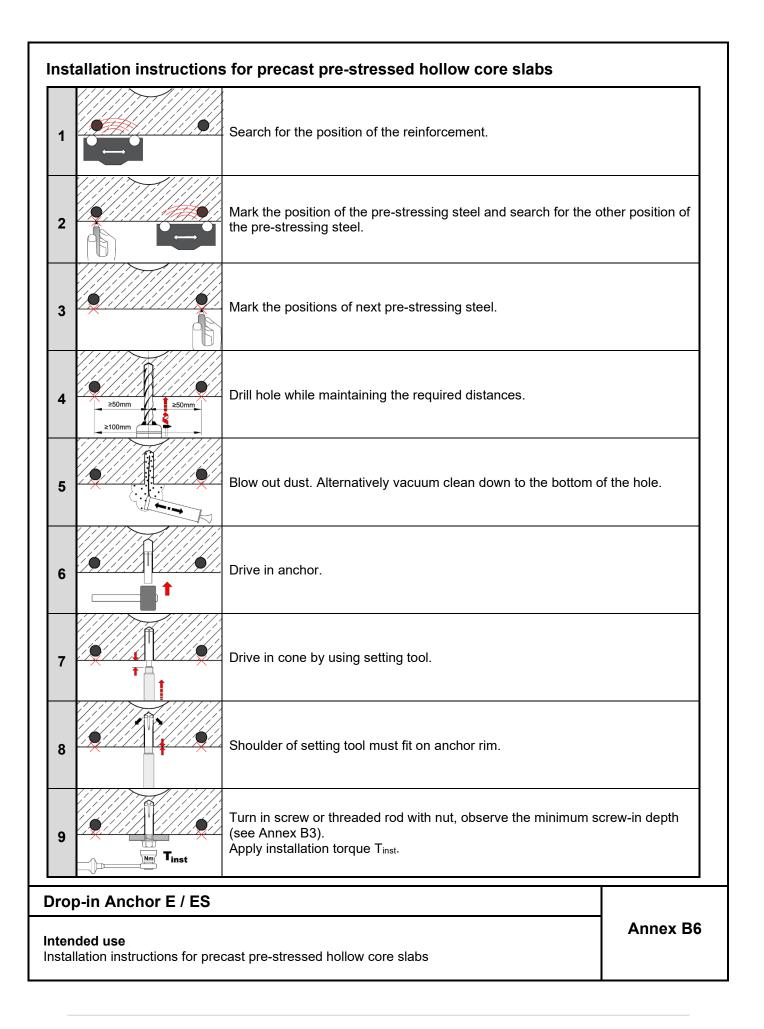
Annex B2

Table B1: Installation pa	arame	ters fo	r h _{ef} ≥ 3	0 mm				·	
Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Depth of drill hole E	h ₀ =	[mm]	30	30	40	30	40	50	65
Depth of drill hole ES	h₀ ≥	[mm]	30	30	40	30	40	50	65
Drill hole diameter	d ₀ =	[mm]	8	10	10	12	12	15	20
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	20,55
Maximum installation torque	T _{inst} ≤	[Nm]	4	8	8	15	15	35	60
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	7	9	9	12	12	14	18
Thread length	L_{th}	[mm]	13	13	20	12	15	18	23
Minimum screw-in depth	Lsdmin	[mm]	7	9	9	10	11	13	18
Steel, zinc plated									
Minimum thickness of member	h _{min}	[mm]	100	100	100	120	120	130	160
Minimum spacing	S _{min}	[mm]	55	60	80	100	100	120	150
Minimum distance	Cmin	[mm]	95	95	95	115	135	165	200
Stainless steel A4, HCR	-				<u>1</u>				
Minimum thickness of member	h _{min}	[mm]	100	100	100	-	130	140	160
Minimum spacing	Smin	[mm]	50	60	80		100	120	150
Minimum distance	Cmin	[mm]	80	95	95		135	165	200

Table B2: Installation parameters for h_{ef} = 25 mm


Anchor size			M6x25	M8x25	M10x25	M12x25	
Depth of drill hole	h₀≥	[mm]	25	25	25	25	
Drill hole diameter	d ₀ =	[mm]	8	10	12	15	
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	15,5	
Maximum installation torque	T _{inst} ≤	[Nm]	4	8	15	35	
Diameter of clearance hole in the fixture	$d_{f} \leq$	[mm]	7	9	12	14	
Thread length	L _{th}	[mm]	12	12	12	12	
Minimum screw-in depth	L_{sdmin}	[mm]	6	8	10	12	
Minimum thickness of member	h _{min,1}	[mm]	80				
Minimum spacing	Smin	[mm]	30	70	70	100	
Minimum edge distance	Cmin	[mm]	60	100	100	130	
Standard thickness of member	h _{min,2}	[mm]		10)0		
Minimum spacing	Smin	[mm]	30	50	60	100	
Minimum edge distance	Cmin	[mm]	60	100	100	110	
Installation in precast pre-stressed hollo	ow core s	labs C3	0/37 to C50/6	60			
Spacing	Smin	[mm]		20)0		
Edge distance	Cmin	[mm]		15	50		


Drop-in Anchor E / ES


Intended use

Installation parameters

Annex B3

Table C1: Characteristic res	sistance	for h ef	≥ 30 m	m in so	lid con	crete sl	abs		
Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Installation factor	γ_{inst}	[-]		L		1,0			
Load in any direction									
Characteristic resistance in concrete C20/25 to C50/60	F⁰ _{Rk}	[kN]	3	5	6	6	6	6	16
Partial factor	$\gamma_{M^{1)}}$	[-]	1,8	2,	16	2,1	2,16	1,8	1,8
Spacing	Scr	[mm]	130	180	210	230	170	170	400
Edge distance	Ccr	[mm]	65	90	105	115	85	85	200
Shear load with lever arm, steel zinc plated									
Characteristic resistance (Steel 4.6)	M ⁰ Rk,s	[Nm]	6,1	15	15	30	30	52	133
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,67			
Characteristic resistance (Steel 4.8)	M ⁰ Rk,s	[Nm]	6,1	15	15	30	30	52	133
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,25			
Characteristic resistance (Steel 5.6)	M ⁰ Rk,s	[Nm]	7,6	19	19	37	37	65	166
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,67			
Characteristic resistance (Steel 5.8)	M ⁰ _{Rk,s}	[Nm]	7,6	19	19	37	37	65	166
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,25			
Characteristic resistance (Steel 8.8)	M ⁰ Rk,s	[Nm]	12	30	30	59	60	105	266
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,25			
Shear load with lever arm, stain	nless steel	A4 / H0	CR						
Characteristic resistance (Property class 70)	M ⁰ Rk,s	[Nm]	11	26	26	_2)	52	92	233
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,56			
Characteristic resistance (Property class 80)	M ⁰ Rk,s	[Nm]	12	30	30	_2)	60	105	266
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]				1,33			

¹⁾ in absence of other national regulations
 ²⁾ Anchor version is not part of the UKTA

Drop-in Anchor E / ES

Performance

Characteristic resistance for $h_{ef} \ge 30 \text{ mm}$ in solid concrete

Anchor size			M6x25	M8x25	M10x25	M12x25	
Installation factor γ_{inst} [-]			1,0				
Load in any direction							
Characteristic resistance in concrete C12/15 and C16/20	F⁰ _{Rk}	[kN]	2,5	2,5	3,5	3,5	
Characteristic resistance in concrete C20/25 to C50/60	F⁰ _{Rk}	[kN]	3,5	4,0	4,5	4,5	
Partial factor	$\gamma_{M^{1)}}$	[-]	1,5				
Spacing	Scr	[mm]	75	75	75	75	
Edge distance	Ccr	[mm]	38	38	38	38	
Shear load with lever arm							
Characteristic resistance (Steel 4.6)	$M^0_{Rk,s}$	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]	1,67				
Characteristic resistance (Steel 4.8)	$M^0_{Rk,s}$	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{\rm Ms}{}^{1)}$	[-]	1,25				
Characteristic resistance (Steel 5.6)	$M^0_{Rk,s}$	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]	1,67				
Characteristic resistance (Steel 5.8)	$M^{0}_{Rk,s}$	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{\rm Ms}{}^{1)}$	[-]	1,25				
Characteristic resistance (Steel 8.8)		[Nm]	12	30	60	105	
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]	1,25				

Table C2: Characteristic resistance for h_{ef} = 25 mm in solid concrete slabs

¹⁾ in absence of other national regulations

Drop-in Anchor E / ES

Performance

Characteristic resistance for h_{ef} = 25 mm in solid concrete

Table C3: Characteristic resistance for hef = 25 mm in precast pre-stressed hollow coreslabs

· · · · · · · · · · · · · · · · · · ·				[
Anchor size			M6x25	M8x25	M10x25	M12x25	
Installation factor	[-]	1,0					
Load in any direction							
Flange thickness	d_b	[mm]	≥ 35 (30) ¹⁾				
Characteristic resistance in precast pre-stressed hollow core slabs C30/37 to C50/60	F⁰ _{Rk}	[kN]	3,5	4,0	4,5	4,5	
Partial factor	$\gamma_{M^{2)}}$	[-]	1,5				
Spacing	Scr	[mm]	200				
Edge distance	[mm]	150					
Shear load with lever arm							
Characteristic resistance (Steel 4.6)	$M^0_{Rk,s}$	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{\text{Ms}}{}^{2)}$	[-]	1,67				
Characteristic resistance (Steel 4.8)	$M^0_{Rk,s}$	[Nm]	6,1 15 30		52		
Partial factor	$\gamma_{\text{Ms}}{}^{2)}$	[-]	1,25				
Characteristic resistance (Steel 5.6)	$M^0_{Rk,s}$	[Nm]	7,6 19 37		37	65	
Partial factor	$\gamma_{\rm Ms}{}^{2)}$	[-]	1,67				
Characteristic resistance (Steel 5.8)	$M^0_{Rk,s}$	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{\rm Ms}{}^{2)}$	[-]	1,25				
Characteristic resistance M (Steel 8.8)		[Nm]	12	30	60	105	
Partial factor	$\gamma_{\rm Ms}{}^{2)}$	[-]	1,25				

¹⁾ the anchor may be set in a flange thickness of 30 mm with identical characteristic loads, if the borehole cuts no hollow core ²⁾ in absence of other national regulations

Drop-in Anchor E / ES

Performance

Characteristic resistance for h_{ef} = 25 mm in precast pre-stressed hollow core slabs

Table C4: Characteristic values under fire exposure in solid concrete slabsC20/25 to C50/60 for $h_{ef} \ge 30 \text{ mm}$

Fire resis- ance class R 30 Steel R 60	Load in any direc			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x6
		tion								
Steel R 60			[kN]	0,4	0,6	0,6	0,9	0,9	1,5	3,1
Sleer	Characteristic	-0	[kN]	0,35	0,6	0,6	0,8	0,8	1,3	2,4
4.6 R 90		F ⁰ Rk,fi	[kN]	0,3	0,6	0,6	0,6	0,6	1,1	2,0
R 120)		[kN]	0,25	0,5	0,5	0,5	0,5	0,8	1,6
R 30			[kN]	0,4	0,9	1,1	0,9	1,5	1,5	4,0
Steel R 60	Characteristic	- 0	[kN]	0,35	0,9	0,9	0,9	1,5	1,5	4,0
4.8 R 90		F ⁰ Rk,fi	[kN]	0,3	0,6	0,6	0,9	1,1	1,5	3,0
R 120)		[kN]	0,3	0,5	0,5	0,7	0,9	1,2	2,4
R 30			[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
Steel R 60	Characteristic	F ⁰ _{Rk,fi}	[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
≥ 5.6 R 90	resistance	F [°] Rk,fi	[kN]	0,4	0,9	0,9	0,9	1,5	1,5	3,7
R 120)		[kN]	0,3	0,5	0,5	0,7	1,0	1,2	2,4
R 30			[kN]	0,8	0,9	1,5	_1)	1,5	1,5	4,0
A4 / R 60	Characteristic	F 0	[kN]	0,8	0,9	1,5	_1)	1,5	1,5	4,0
HCR R 90	resistance	F ⁰ Rk,fi	[kN]	0,4	0,9	0,9	_1)	1,5	1,5	3,7
R 120)		[kN]	0,3	0,5	0,5	_1)	1,0	1,2	2,4
	Partial factor	γM,fi	[-]				1,0			
Steel zinc pla	ted	-	•	•						
	Spacing	Scr,fi	[mm]	130	180	210	170	170	200	400
R 30 – R 120	Edge distance	Ccr,fi	[mm]	65	90	105	85	85	100	200
	If the fire attack is	from more t	than or	ne side, tl	ne edge (distance	shall be	≥ 300 mr	n.	
Stainless ste	el A4, HCR									
	Spacing	S _{cr,fi}	[mm]	130	180	210	_1)	170	200	400
R 30 – R 120	Edge distance	C _{cr,fi}	[mm]	65	90	105	_1)	85	100	200
	If the fire attack is	from more t	than or	ne side, tl	he edge distance shall be \geq 300 mm.					

Table C5: Characteristic values under fire exposure in solid concrete slabs C20/25 to C50/60 for h_{ef} = 25 mm

Anchor size					M6x25	M8x25	M10x25	M12x25
Fire resis- tance class Load in any direction						-		
Steel ≥ 4.6	R 30	Characteristic resistance		[kN]	0,4	0,6	0,6	0,6
	R 60		F 0	[kN]	0,35	0,6	0,6	0,6
	R 90		F ⁰ Rk,fi	[kN]	0,3	0,6	0,6	0,6
	R 120			[kN]	0,25	0,5	0,5	0,5
Partial factor $\gamma_{M,fi}$ [-]			[-]	1,0				
		Spacing	Scr,fi	[mm]	100	100	100	100
R 30 – R 120		Edge distance	C _{cr,fi}	[mm]	50	50	50	50
If the fire attack is from more than one side, the edge distance shall be \geq 300 mm.						n.		

Drop-in Anchor E / ES

Performance

Characteristic values under fire exposure for h_{ef} = 25 mm

British Board of Agrément, 1st Floor Building 3, Hatters Lane,

1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG