

PROHLÁŠENÍ O VLASTNOSTECH

DoP číslo MKT-1.1-600_cz

Jedinečný identifikační kód typu výrobku:

Těžká kotva SLZ

→ Zamýšlené/zamýšlená použití:

Dilatační hmoždinky řízené silou (galvanizovaná ocel) ve

velikosti 14 / M10 pro ukotvení do betonu,

viz příloha / Annex B

♦ Výrobce:

MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

 Systém nebo systémy posuzování a ověřování stálosti vlastností stavebních výrobků:

♦ Evropský dokument pro posuzování:

EAD 330232-00-0601

Evropské technické posouzení:

ETA-09/0342, 01.03.2018

Subjekt pro technické posuzování:

DIBt, Berlin

1

Oznámený subjekt/oznámené subjekty:

NB 2873 - Technische Universität Darmstadt

Vlastnosti uvedené v prohlášení

Základní charakteristiky	Vlastnosti
Mechanická odolnost a stabilita (BWR 1)	
Charakteristické odpory (statické a kvazistatické zatížení), Posuny	Příloha / Annex C1 – C2
Požární bezpečnost (BWR 2)	
Chování při požáru	Třída A1
Požární odolnost	Příloha / Annex C3

Vlastnosti výše uvedeného výrobku jsou ve shodě se souborem deklarovaných vlastností. Toto prohlášení o vlastnostech se v souladu s nařízením (EU) č. 305/2011 vydává na výhradní odpovědnost výrobce uvedeného výše.

Podepsáno za výrobce a jeho jménem:

Stefan Weustenhagen (Výkonný ředitel)

Weilerbach, 01.01.2021

Dipl.-Ing. Detlef Bigalke (Vedoucí vývoje produktu)

Originál tohoto prohlášení byl napsán v němčině. V případě odchylek v překladu platí německá verze.

Specifications of intended use

Anchorages subject to:

- Static or quasi-static action
- fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000
- Cracked and uncracked concrete

Use conditions (Environmental conditions):

Structures subject to dry internal conditions (zinc plated steel).

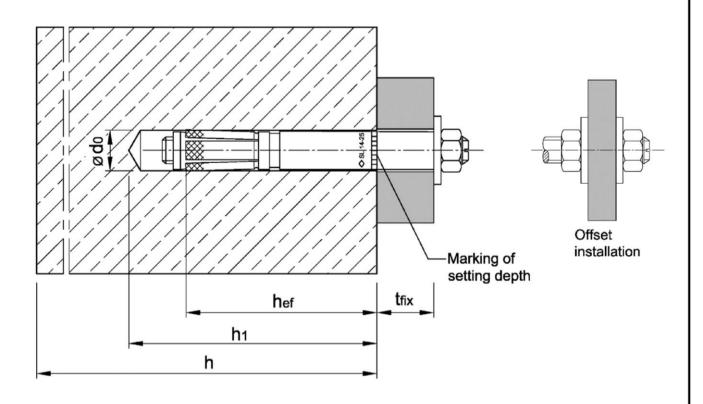
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed according to FprEN 1992-4: 2016 and TR 055.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Positioning of the drill holes without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured,
 when the embedment mark of the anchor does no more exceed the concrete surface
- Drilling by hammer drill bit (use of vacuum drill bit is admissible)

Hignioad	Anchor	SLZ


Installation instructions Drill hole perpendicular to concrete surface. 1 Using a vacuum drill bit, proceed with step 3. Blow out dust. Alternatively vacuum clean down 2 to the bottom of the hole. 3 Drive in anchor. TINST Apply tightening torque T_{inst} by using torque wrench.

Highload	Anchor S	SLZ

Intended use Installation instructions Annex B2

Table B1: Installation parameters

Anchor size			14/M10
Size of thread			M10
Effective anchorage depth	h _{ef}	[mm]	65
Nominal diameter of drill bit	d ₀	[mm]	14
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	14,5
Depth of drill hole	h₁ ≥	[mm]	85
Diameter of clearance hole in the fixture mounted on distance sleeve	$d_{f} \leq$	[mm]	16
Diameter of clearance hole in the fixture mounted on threaded bolt	$d_f \leq $	[mm]	12
Installation torque	T_{inst}	[Nm]	50
Minimum thickness of member	h_{min}	[mm]	130
Minimum angaina	S _{min}	[mm]	60
Minimum spacing		[mm]	120
NP - Parameter Parameter	C _{min}	[mm]	70
Minimum edge distance	s≥	[mm]	130

Highload Anchor SLZ

Intended use Installation parameters Annex B3

Table C1: Characteristic values for tension loads

Anchor size			14/M10
Installation safety factor	γinst	[-]	1,0
Steel failure	-		
Characteristic resistance	$N_{Rk,s}$	[kN]	46
Partial safety factor	γ̃Ms	[-]	1,5
Pull-out failure			
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	12
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	20
Increasing factors for N _{RK,p}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$
Concrete cone failure			
Effective Anchorage depth	h _{ef}	[mm]	65
Spacing	$S_{cr,N}$	[mm]	3 h _{ef}
Edge distance	$C_{cr,N}$	[mm]	1,5 h _{ef}
Factor k₁ for cracked concrete	$k_{cr,N}$	[-]	7,7
Factor k₁ for uncracked concrete	$k_{ucr,N}$	[-]	11,0
Splitting failure			
Characteristic resistance in uncracked concrete	$N^0_{\ Rk,sp}$	[kN]	min [N _{Rk,p} ;N ⁰ _{Rk,c}]
Spacing	S _{cr,sp}	[mm]	390
Edge distance	C _{cr,sp}	[mm]	195

Table C2: Displacements under tension loads

Anchor size			14/M10
Tension load in cracked concrete	N	[kN]	5,7
Displacement	δ_{N0}	[mm]	0,8
	$\delta_{N\infty}$	[mm]	1,5
Tension load in uncracked concrete	N	[kN]	9,5
Dianlacement	δ_{N0}	[mm]	0,3
Displacement	$\delta_{N\infty}$	[mm]	1,2

Performance

Characteristic values and displacements under tension load

Annex C1

Table C3: Characteristic values for shear loads

Anchor size			14/M10
Steel failure without lever arm			
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} ≤ 75 mm	$V^0_{Rk,s}$	[kN]	32,8
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} > 75 mm	$V^0_{\text{Rk},s}$	[kN]	23,2
Factor	k_7	[-]	1,0
Partial safety factor	γMs	[-]	1,25
Steel failure with lever arm			
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	60
Partial safety factor	γMs	[-]	1,25
Concrete pry-out failure			
Factor	k ₈	[-]	2,0
Concrete edge failure			
Effective length of anchor in shear loading	l _f	[mm]	65
Outside diameter of anchor	d_{nom}	[mm]	14

Table C4: Displacements under shear loads

Anchor size			14/M10
Shear load in non-cracked concrete	V	[kN]	13,2
Dianlacement	δ_{V0}	[mm]	2,2
Displacement	$\delta_{V^{\infty}}$	[mm]	3,3

Table C5: Characteristic values under fire exposure in concrete C20/25 to C50/60

Anchor size				14/M10
Tension load				
Steel failure				
	R30	_		0,9
Characteristic resistance	R60	N	[kN]	0,8
Characteristic resistance	R90	$ N_{Rk,s,fi}$		0,6
	R120			0,5
Shear load				
Steel failure without lever arm				
	R30	$V_{Rk,s,fi}$	[kN]	0,9
Characteristic registance	R60			0,8
Characteristic resistance	R90			0,6
	R120			0,5
Steel failure with lever arm				
Characteristic resistance	R30		[MM]	1,1
	R60	- M ⁰ _{Rk,s,fi}		1,0
	R90	- IVI Rk,s,fi	[Nm]	0,7
	R120	_		0,6

Highload	Anchor	SLZ