

... eine starke Verbindung

VYHLÁSENIE O PARAMETROCH

DoP č.: MKT-1.2-100_sk

¢	Jedinečný identifikačný kód typu výrobku:	Narážacia kotva MKT E/ES
♦	Zamýšľané použitie/použitia:	Rozpínacia kotva na použitie ako viacnásobné pripevnenie nekonštrukčných systémov do betónu, viď príloha / Annex B
¢	Výrobca:	MKT Metall-Kunststoff-Technik GmbH & Co.KG Auf dem Immel 2 67685 Weilerbach
¢	Systém(-y) posudzovania a overovania nemennosti parametrov:	2+
	Európsky hodnotiaci dokument: Európske technické posúdenie: Orgán technického posudzovania: Notifikovaný(-é) subjekt(-y):	ETAG 001-6 ETA-05/0116, 04.01.2017 DIBt, Berlin NB 2873 – Technische Universität Darmstadt
♦	Deklarované parametre:	

Podstatné vlastnosti	Parametre		
Bezpečnosť v prípade požiaru (BWR 2)			
Správanie pri požiari	Trieda A1		
Požiarna odolnosť	Príloha/Annex C4 – C5		
Bezpečnosť počas používania (BWR 4)			
Charakteristické hodnoty pre všetky smery zaťaženia	Príloha/Annex C1 – C3		

Uvedené parametre výrobku sú v zhode so súborom deklarovaných parametrov. Toto vyhlásenie o parametroch sa v súlade s nariadením (EÚ) č. 305/2011 vydáva na výhradnú zodpovednosť uvedeného výrobcu.

Podpísal(-a) za a v mene výrobcu:

Stefan Weustenhagen (Generálny riaditeľ) Weilerbach, 01.01.2021

p.p. Rigalla

Dipl.-Ing. Detlef Bigalke (Vedúci vývoja produktov)

Originál tohto vyhlásenia o vykonaní bol napísaný v nemčine. V prípade odchýlok v preklade platí nemecká verzia.

Specifications of intended us	e							
Drop-in Anchor								
Anchorage depth h _{ef} ≥ 30 mm	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	
Steel, zinc plated				~				
Stainless steel A4 and high corrosion resistant steel HCR		\checkmark			~			
Static and quasi-static loads	\checkmark							
Fire exposure								
Cracked and uncracked concrete								
Solid concrete C20/25 to C50/60				\checkmark				
Anchorage depth h _{ef} = 25 mm	M6x25	M8x25	M10x25	M12x25				
Steel, zinc plated			✓					
Stainless steel A4 and high corrosion resistant steel HCR			-					
Static and quasi-static loads			✓					
Fire exposure (solid concrete, C20/25 to C50/60)			✓					
Cracked and uncracked concrete			\checkmark					
Solid concrete C12/15 to C50/60			✓					
Precast pre-stressed hollow core slabs (C30/37 to C50/60)			✓					

Base materials:

• reinforced or unreinforced normal weight concrete according to EN 206-1:2000

Use conditions:

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions
 (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

Drop-in Anchor E / ES

Intended use Specifications Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer
- Anchorages under static or quasi-static actions for multiple use for non-structural applications are designed in accordance with:
 - ETAG 001, Annex C, design method B, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method B
- Anchorages under static or quasi-static actions for precast pre-stressed hollow core slabs:
 - ETAG 001, Annex C, design method C, Edition August 2010.
 - CEN/TS 1992-4:2009, design method C
- Anchorages under fire exposure are designed in accordance with:
 - ETAG 001, Annex C, design method B, Edition August 2010 and EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4:2009, Annex D
 - It must be ensured that local spalling of the concrete cover does not occur.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools,
- Drill hole by hammer drilling only (use of vacuum drill bits is admissible),
- Positioning of the drill holes without damaging the reinforcement.

Drop-in Anchor E / ES

Intended use Specifications Annex B2

Table B1: Installation parameters for $h_{ef} \ge 30 \text{ mm}$										
Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65	
Depth of drill hole	h₀ =	[mm]	30	30	40	30	40	50	65	
Drill hole diameter	d ₀ =	[mm]	8	10	10	12	12	15	20	
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	20,55	
Max. recommended installation torque	T _{inst} ≤	[Nm]	4	8	8	15	15	35	60	
Diameter of clearance hole in the fixture	$\boldsymbol{d}_{f} \leq$	[mm]	7	9	9	12	12	14	18	
Available thread length	L _{th}	[mm]	13	13	20	12	15	18	23	
Minimum screw-in depth	L_{sdmin}	[mm]	7	9	9	10	11	13	18	
Steel, zinc plated										
Minimum thickness of member	r h _{min}	[mm]	100	100	100	120	120	130	160	
Minimum spacing	Smin	[mm]	55	60	80	100	100	120	150	
Minimum distance	Cmin	[mm]	95	95	95	115	135	165	200	
Stainless steel A4, HCR										
Minimum thickness of member	r h _{min}	[mm]	100	100	100	-	130	140	160	
Minimum spacing	Smin	[mm]	50	60	80	-	100	120	150	
Minimum distance	Cmin	[mm]	80	95	95	-	135	165	200	

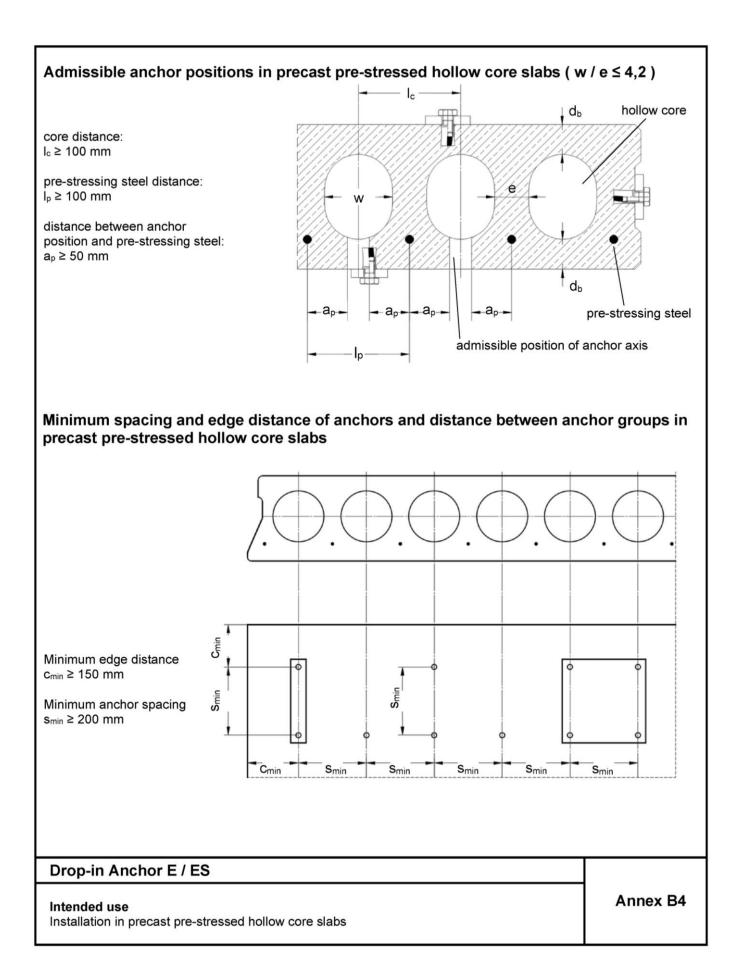

Table B1: Installation parameters for $h_{ef} \ge 30 \text{ mm}$

Table B2: Installation parameters for h_{ef} = 25 mm

Anchor size			M6x25	M8x25	M10x25	M12x25	
Depth of drill hole	h0 =	[mm]	25	25	25	25	
Drill hole diameter	d ₀ =	[mm]	8	10	12	15	
Cutting diameter of drill bit	$d_{\text{cut}} \leq$	[mm]	8,45	10,45	12,5	15,5	
Max. recommended installation torque	T _{inst} ≤	[Nm]	4	8	15	35	
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	12	14	
Available thread length	L _{th}	[mm]	12	12	12	12	
Minimum screw-in depth	L_{sdmin}	[mm]	6	8	10	12	
Minimum thickness of member	h _{min,1}	[mm]		8	0		
Minimum spacing	Smin	[mm]	30	70	70	100	
Minimum edge distance	Cmin	[mm]	60	100	100	130	
Standard thickness of member	h _{min,2}	[mm]		10	00		
Minimum spacing	Smin	[mm]	30	50	60	100	
Minimum edge distance	Cmin	[mm]	60	100	100	110	
Installation in precast pre-stressed hollow	v core slab	s C30/37	7 to C50/60				
Spacing	Smin	[mm]	n] 200				
Edge distance	Cmin	[mm]		15	50		

Drop-in Anchor E / ES

Intended use Installation parameters Annex B3

Installation	instructions for solid c	oncrete slabs					
1		Drill hole perpendicular to concrete surface. V using vacuum drill bit proceed with step 3.	When				
2	Contraction of the second seco	Blow out dust. Alternatively vacuum-clean do bottom of the hole.	wn to the				
3		Drive in anchor.					
4		Drive in cone by using setting tool.					
5		Shoulder of setting tool must fit on anchor rim.					
6		Apply installation torque T _{inst} by using calibrat wrench.	ed torque				
Drop-in An	nchor E / ES						
Intended use	Annex B5						

1		Search for the position of the reinforcement.
2		Mark the position of the reinforcement and search for the other position of the reinforcement
3		Mark the positions of reinforcement.
4	2 50mm	Drill hole while maintaining the required distances.
5		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
6		Drive in anchor.
7		Drive in cone by using setting tool.
8		Shoulder of setting tool must fit on anchor rim.
9		Apply installation torque T _{inst} by using calibrated torqu wrench.
on-in Ar	nchor E / ES	

								1	
Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Load in any direction									
Characteristic resistance in concrete C20/25 to C50/60	F⁰ _{Rk}	[kN]	3	5	6	6	6	6	16
Partial safety factor	γм	[-]	1,8	2,	16	2,1	2,16	1,8	1,8
Spacing	Scr	[mm]	130	180	210	230	170	170	400
Edge distance	Ccr	[mm]	65	90	105	115	85	85	200
Shear load with lever arm, St	eel zinc plate	ed							
Characteristic resistance (Steel 4.6)	M ⁰ Rk,s ¹⁾	[Nm]	6,1	15	15	30	30	52	133
Partial safety factor	γMs	[-]				1,67			
Characteristic resistance (Steel 4.8)	M ⁰ Rk,s ¹⁾	[Nm]	6,1	15	15	30	30	52	133
Partial safety factor	γMs	[-]			-	1,25			
Characteristic resistance (Steel 5.6)	M ⁰ Rk,s ¹⁾	[Nm]	7,6	19	19	37	37	65	166
Partial safety factor	γMs	[-]				1,67			
Characteristic resistance (Steel 5.8)	M ⁰ Rk,s ¹⁾	[Nm]	7,6	19	19	37	37	65	166
Partial safety factor	γMs	[-]				1,25			
Characteristic resistance (Steel 8.8)	M ⁰ Rk,s ¹⁾	[Nm]	12	30	30	59	60	105	266
Partial safety factor	γMs	[-]				1,25			
Shear load with lever arm, Sta	ainless steel	A4 / H	CR						
Characteristic resistance (Property class 70)	M ⁰ Rk,s ¹⁾	[Nm]	11	26	26	-	52	92	233
Partial safety factor	γMs	[-]				1,56			
Characteristic resistance (Property class 80)	M ⁰ Rk,s ¹⁾	[Nm]	12	30	30	-	60	105	266
Partial safety factor	γMs	[-]				1,33			

Table C1: Characteristic resistance for $h_{ef} \ge 30$ mm in solid concrete slabs

1) Characteristic bending moment M⁰_{Rk,s} for equation (5.5) in ETAG 001, Annex C or for equation (14) in CEN/TS 1992-4-4

Drop-in Anchor E / ES

Table C2: Characteristic resistance for hef = 25 mm in solid concrete slabs

Anchor size			M6x25	M8x25	M10x25	M12x25
Load in any direction		I			1	
Characteristic resistance in concrete C12/15 and C16/20	F ⁰ Rk	[kN]	2,5	2,5	3,5	3,5
Characteristic resistance in concrete C20/25 to C50/60	F ⁰ Rk	[kN]	3,5	4,0	4,5	4,5
Partial safety factor	γм	[-]		1,5		
Spacing	Scr	[mm]	75	75	75	75
Edge distance	Ccr	[mm]	38	38	38	38
Shear load with lever arm						
Characteristic resistance (Steel 4.6)	M ⁰ Rk,s ¹⁾	[Nm]	6,1	15	30	52
Partial safety factor	γMs	[-]		1,	67	
Characteristic resistance (Steel 4.8)	M ⁰ _{Rk,s} ¹⁾	[Nm]	6,1	15	30	52
Partial safety factor	γMs	[-]		1,:	25	
Characteristic resistance (Steel 5.6)	M ⁰ Rk,s ¹⁾	[Nm]	7,6	19	37	65
Partial safety factor	γMs	[-]		1,	67	
Characteristic resistance (Steel 5.8)	M ⁰ Rk,s ¹⁾	[Nm]	7,6	19	37	65
Partial safety factor	γMs	[-]		1,	25	
Characteristic resistance (Steel 8.8)	M ⁰ Rk,s ¹⁾	[Nm]	12	30	60	105
Partial safety factor	γMs	[-]		1,	25	

¹⁾ Characteristic bending moment M⁰_{Rk,s} for equation (5.5) in ETAG 001, Annex C or for equation (14) in CEN/TS 1992-4-4

Drop-in Anchor E / ES

Table C3: Characteristic resistance for hef = 25 mm in precast pre-stressed hollow core slabs

Anchor size			M6x25	M8x25	M10x25	M12x25	
Load in any direction							
Flange thickness	Flange thickness d _b [mm]						
Characteristic resistance in precast pre-stressed hollow core slabs C30/37 to C50/60	F _{Rk}	[kN]	3,5	4,0	4,5	4,5	
Partial safety factor	γм	[-]		1,5			
Spacing	Scr	[mm]		200			
Edge distance	Ccr	[mm]		150			
Shear load with lever arm							
Characteristic resistance (Steel 4.6)	M ⁰ Rk,s ²⁾	[Nm]	6,1	15	30	52	
Partial safety factor	γMs	[-]		1,	67		
Characteristic resistance (Steel 4.8)	M ⁰ Rk,s ²⁾	[Nm]	6,1	15	30	52	
Partial safety factor	γMs	[-]		1,:	25		
Characteristic resistance (Steel 5.6)	M ⁰ Rk,s ²⁾	[Nm]	7,6	19	37	65	
Partial safety factor	γMs	[-]		1,	67		
Characteristic resistance (Steel 5.8)	M ⁰ Rk,s ²⁾	[Nm]	7,6	19	37	65	
Partial safety factor	γMs	[-]		1,:	25		
Characteristic resistance (Steel 8.8)	M ⁰ Rk,s ²⁾	[Nm]	12	30	60	105	
Partial safety factor	γMs	[-]	1,25				

¹⁾ The anchor may be set in a flange thickness of 30 mm with identical characteristic loads, if the borehole cuts no hollow core.

²⁾ Characteristic bending moment M⁰_{Rk,s} for equation (5.5) in ETAG 001, Annex C or for equation (14) in CEN/TS 1992-4-4

Drop-in Anchor E / ES

Performance Characteristic resistance for h_{ef} = 25 mm in precast pre-stressed hollow core slabs Annex C3

	size				M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x6	
Fire res tance c		Load in any direc	tion									
	R 30			[kN]	0,4	0,6	0,6	0,9	0,9	1,5	3,1	
Steel	R 60	Characteristic	-0	[kN]	0,35	0,6	0,6	0,8	0,8	1,3	2,4	
4.6	R 90	resistance	F ⁰ Rk,fi	[kN]	0,30	0,6	0,6	0,6	0,6	1,1	2,0	
	R 120			[kN]	0,25	0,5	0,5	0,5	0,5	0,8	1,6	
	R 30			[kN]	0,4	0,9	1,1	0,9	1,5	1,5	4,0	
Steel	R 60	Characteristic	-0	[kN]	0,35	0,9	0,9	0,9	1,5	1,5	4,0	
4.8	R 90	resistance	F ⁰ Rk,fi	[kN]	0,3	0,6	0,6	0,9	1,1	1,5	3,0	
	R 120			[kN]	0,3	0,5	0,5	0,7	0,9	1,2	2,4	
	R 30			[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0	
Steel	R 60	Characteristic	-0	[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0	
≥ 5.6	R 90	resistance	F ⁰ Rk,fi	[kN]	0,4	0,9	0,9	0,9	1,5	1,5	3,7	
	R 120			[kN]	0,3	0,5	0,5	0,7	1,0	1,2	2,4	
	R 30			[kN]	0,8	0,9	1,5	-	1,5	1,5	4,0	
A4 /	R 60	Characteristic resistance	-0	[kN]	0,8	0,9	1,5	-	1,5	1,5	4,0	
HCR	R 90		F ⁰ _{Rk,fi}	[kN]	0,4	0,9	0,9	-	1,5	1,5	3,7	
	R 120			[kN]	0,3	0,5	0,5	-	1,0	1,2	2,4	
		Partial safety facto	Γ γΜ,fi	[-]				1,0				
Steel zi	nc plate	ed										
		Spacing	Scr,fi	[mm]	130	180	210	170	170	200	400	
R 30 –	R 120	Edge distance	Ccr,fi	[mm]	65	90	105	85	85	100	200	
		If the fire attack is f	rom more t	than on	ie side, t	he edge (distance	shall be	≥ 300 mr	n.		
Stainle	ss steel	A4, HCR										
		Spacing	Scr,fi	[mm]	130	180	210	-	170	200	400	
R 30 –	R 120	Edge distance	Ccr,fi	[mm]	65	90	105	-	85	100	200	
		If the fire attack is f	rom more t	If the fire attack is from more than one side, the edge distance shall be \geq 300 mm.								

Table C4:Characteristic values under fire exposure in solid concrete slabsC20/25 toC50/60 for $h_{ef} \ge 30 \text{ mm}$

Performance Characteristic values under fire exposure for $h_{ef} \ge 30 \text{ mm}$

Table C5:Characteristic values under fire exposure in solid concrete slabs C20/25 to
C50/60 for h_{ef} = 25 mm

Ancho	r size				M6x25	M8x25	M10x25	M12x25	
Fire resis- tance class		Load in any directi	on						
	R 30			[kN]	0,4	0,6	0,6	0,6	
Steel	R 60	Characteristic resistance	F ⁰ _{Rk,fi}	[kN]	0,35	0,6	0,6	0,6	
≥ 4.6	R 90			[kN]	0,30	0,6	0,6	0,6	
	R 120			[kN]	0,25	0,5	0,5	0,5	
		Partial safety factor γ _{Μ,fi} [-]			1,0				
		Spacing	S cr,fi	[mm]	100	100	100	100	
R 30 – R 120		Edge distance	Ccr,fi	[mm]	50	50	50	50	
		If the fire attack is from	om more t	than one	e side, the edg	e distance sha	all be ≥ 300 mr	n.	

Drop-in Anchor E / ES